In this paper, an effective method for selecting significant input variables in building ANFIS (Adaptive Neuro-Fuzzy Inference System) for nonlinear system modeling is proposed. Dominant inputs in a nonlinear system identification process are extracted by evaluating the performance index and they are applied to ANFIS. The availability of our proposed model is verified with the Box and Jenkins gas furnace data. The comparisons with other methods are also given in this paper to show our proposed method is superior to other models.
Nonlinear behavior in fluid-structure interaction (FSI) of bridge decks becomes increasingly significant for modern bridges with increasing spans, larger flexibility and new aerodynamic deck configurations. Better understanding of the nonlinear aeroelasticity of bridge decks and further development of reduced-order nonlinear models for the aeroelastic forces become necessary. In this paper, the amplitude-dependent and neutral angle dependent nonlinearities of the motion-induced loads are further highlighted by series of computational fluid dynamics (CFD) simulations. An effort has been made to investigate a semi-analytical time-domain model of the nonlinear motion induced loads on the deck, which enables nonlinear time domain simulations of the aeroelastic responses of the bridge deck. First, the computational schemes used here are validated through theoretically well-known cases. Then, static aerodynamic coefficients of the Great Belt East Bridge (GBEB) cross section are evaluated at various angles of attack, leading to the so-called nonlinear backbone curves. Flutter derivatives of the bridge are identified by CFD simulations using forced harmonic motion of the cross-section with various frequencies. By varying the amplitude of the forced motion, it is observed that the identified flutter derivatives are amplitude-dependent, especially for $A^*_2$ and $H^*_2$ parameters. Another nonlinear feature is observed from the change of hysteresis loop (between angle of attack and lift/moment) when the neutral angles of the cross-section are changed. Based on the CFD results, a semi-analytical time-domain model for describing the nonlinear motion-induced loads is proposed and calibrated. This model is based on accounting for the delay effect with respect to the nonlinear backbone curve and is established in the state-space form. Reasonable agreement between the results from the semi-analytical model and CFD demonstrates the potential application of the proposed model for nonlinear aeroelastic analysis of bridge decks.
Kim, Hyeong-Su;Gang, Du-Seon;Kim, Jong-U;Kim, Jung-Hun
Journal of Korea Water Resources Association
/
v.31
no.6
/
pp.769-777
/
1998
In this study, various time series are analyzed to check nonlinearities of the data. The nonlinearity of a system can be investigated by testing the randomness of the time series data. To test the randomness, four nonparametric test statistics and a new test statistic, called the BDS statistic are used and the results and the results are compared. The Brock, Dechert, and Scheinkman (BDS) statistic is originated from the statistical properties of the correlation integral which is used for searching for chaos and has been shown very effective in distinguishing nonlinear structures in dynamic systems from random structures. As a result of application to linear and nonlinear models which are well known, the BDS statistic is found to be more effective than nonparametric test statistics in identifying nonlinear structure in the time series. Hydrologic time series data are fitted to ARMA type models and the statistics are applied to the residuals. The results show that the BDS statistic can distinguish chaotic nonlinearity from randomness and that the BDS statistic can also be used for verifying the validity of the fitted model.
As a large amount of data is produced in each industry, a number of time series pattern prediction studies are being conducted to make quick business decisions. However, there is a limit to predicting specific patterns in nonlinear time series data due to the uncertainty inherent in the data, and there are difficulties in making strategic decisions in corporate management. In addition, in recent decades, various studies have been conducted on data such as demand/supply and financial markets that are suitable for industrial purposes to predict time series data of irregular random walk models, but predict specific rules and achieve sustainable corporate objectives There are difficulties. In this study, the prediction results were compared and analyzed using the Chaos analysis method for roulette data and financial market data, and meaningful results were derived. And, this study confirmed that chaos analysis is useful for finding a new method in analyzing time series data. By comparing and analyzing the characteristics of roulette games with the time series of Korean stock index future, it was derived that predictive power can be improved if the trend is confirmed, and it is meaningful in determining whether nonlinear time series data with high uncertainty have a specific pattern.
Transfer function model(TFM) capturings conditional heteroscedastic pattern is introduced to analyze stochastic regression relationship between the two time series. Nonlinear ARCH concept is incorporated into the TFM via threshold ARCH and beta- ARCH models. Steps for statistical analysis of the proposed model are explained along the lines of the Box & Jenkins(1976, ch. 10). For illustration, dynamic analysis between KOSPI and NASDAQ is conducted from which it is seen that threshold ARCH performs the best.
The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.9
no.6
/
pp.49-56
/
1995
In this study, self-tuning adaptive control using state observer is developed. Self-tuning adaptive controller that estimates the parameters of the system in real time and generates the optimal control signals has robust characteristic about varying load and external disturbances. In addition, state observer without sensors is applied, thus the control can be performed more quickly and exactly. Since chopper is used commonly in practical drives, the characteristics of the chopper are included in state observer algorithm, which, in turn, makes the system exact estimation. Since series type DC motor has nonlinear models, linearizing approach are investigated. to realize the proposed algorithm it requires fast calculation in real time. TMS320C31, digital signal processor, is applied to realized the adaptive control algorithms.
The paper considers a hybrid model to analyze and forecast time series data based on an empirical mode decomposition (EMD) that accommodates complex characteristics of time series such as nonstationarity and nonlinearity. We aggregate IMFs using the concept of cumulative energy to improve the interpretability of intrinsic mode functions (IMFs) from EMD. We forecast aggregated IMFs and residue with a hybrid model that combines the ARIMA model and an exponential smoothing method (ETS). The proposed method is applied to forecast KOSPI time series and is compared to traditional forecast models. Aggregated IMFs and residue provide a convenience to interpret the short, medium and long term dynamics of the KOSPI. It is also observed that the hybrid model with ARIMA and ETS is superior to traditional and other types of hybrid models.
Pulse width modulation using discontinuous conduction modes are applied to a full-bridge series resonant converter to regulate the output from no load to full load with low switching loss and a narrow range of frequency variation. Finally, a simple nonlinear discrete-time dynamic model for this proposed converter is derived using approximation. This discrete time model is linearized and a general input - output transfer function for the propelled converter is derived.
International Journal of Internet, Broadcasting and Communication
/
v.12
no.3
/
pp.125-130
/
2020
At the end of 1997, the volatility of the exchange rate intensified as the nation's exchange rate system was converted into a free-floating exchange rate system. As a result, managing the exchange rate is becoming a very important task, and the need for forecasting the exchange rate is growing. The exchange rate prediction model using the existing exchange rate prediction method, statistical technique, cannot find a nonlinear pattern of the time series variable, and it is difficult to analyze the time series with the variability cluster phenomenon. And as the number of variables to be analyzed increases, the number of parameters to be estimated increases, and it is not easy to interpret the meaning of the estimated coefficients. Accordingly, the exchange rate prediction model using artificial neural network, rather than statistical technique, is presented. Using DNN, which is the basis of deep learning among artificial neural networks, and LSTM, a recurrent neural network model, the number of hidden layers, neurons, and activation function changes of each model found the optimal exchange rate prediction model. The study found that although there were model differences, LSTM models performed better than DNN models and performed best when the activation function was Tanh.
Journal of the Korean Data and Information Science Society
/
v.20
no.3
/
pp.475-483
/
2009
In this paper we introduced a class of nonlinear time series models to analyse KOSPI data. We introduce the Generalized Power-Transformation TGARCH (GPT-TGARCH) model and the model includes Zakoian (1993) and Li and Li (1996) models as the special cases. We showed the effectiveness and efficiency of the new model based on KOSPI data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.