• Title/Summary/Keyword: Nonlinear Systems of Equations

Search Result 466, Processing Time 0.035 seconds

A Relative for Finite Element Nonlinear Structural Analysis (상대절점좌표를 이용한 비선형 유한요소해석법)

  • Kang, Ki-Rang;Cho, Heui-Je;Bae, Dae-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.788-791
    • /
    • 2005
  • Nodal displacements are referred to the Initial configuration in the total Lagrangian formulation and to the last converged configuration in the updated Lagrangian formulation. This research proposes a relative nodal displacement method to represent the position and orientation for a node in truss structures. Since the proposed method measures the relative nodal displacements relative to its adjacent nodal reference frame, they are still small for a truss structure undergoing large deformations for the small size elements. As a consequence, element formulations developed under the small deformation assumption are still valid fer structures undergoing large deformations, which significantly simplifies the equations of equilibrium. A structural system is represented by a graph to systematically develop the governing equations of equilibrium for general systems. A node and an element are represented by a node and an edge in graph representation, respectively. Closed loops are opened to form a spanning tree by cutting edges. Two computational sequences are defined in the graph representation. One is the forward path sequence that is used to recover the Cartesian nodal displacements from relative nodal displacements and traverses a graph from the base node towards the terminal nodes. The other is the backward path sequence that is used to recover the nodal forces in the relative coordinate system from the known nodal forces in the absolute coordinate system and traverses from the terminal nodes towards the base node. One closed loop structure undergoing large deformations is analyzed to demonstrate the efficiency and validity of the proposed method.

  • PDF

Stability Condition of Discrete System with Time-varying Delay and Unstructured Uncertainty (비구조화된 불확실성과 시변 지연을 갖는 이산 시스템의 안정 조건)

  • Han, Hyung-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.630-635
    • /
    • 2018
  • In this paper, we consider the stability condition for the linear discrete systems with time-varying delay and unstructured uncertainty. The considered system has time invariant system matrices for non-delayed and delayed state variables, but its delay time is time-varying within certain interval and it is subjected to nonlinear unstructured uncertainty which only gives information on uncertainty magnitude. In the many previous literatures, the time-varying delay and unstructured uncertainty can not be dealt in simultaneously but separately. In the paper, new stability conditions are derived for the case to which two factors are subjected together and compared with the existing results considering only one factor. The new stability conditions improving many previous results are proposed as very effective inequality equations without complex numerical algorithms such as LMI(Linear Matrix Inequality) or Lyapunov equation. By numerical examples, it is shown that the proposed conditions are able to include the many existing results and have better performances in the aspects of expandability and effectiveness.

Dynamic Modeling and Motion Analysis of Unmanned Underwater Gliders with Mass Shifter Unit and Buoyancy Engine (이동질량장치와 부력엔진을 포함한 무인 수중글라이더의 동역학 모델링 및 운동성능 해석)

  • Kim, Donghee;Lee, Sang Seob;Choi, Hyeung Sik;Kim, Joon Young;Lee, Shinje;Lee, Yong Kuk
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.466-473
    • /
    • 2014
  • Underwater gliders do not have any external propulsion systems that can generate and control their motion. Generally, underwater gliders would obtain a propulsive force through the lift force generated on the body by a fluid. Underwater gliders should be equipped with mechanisms that can induce heave and pitch motions. In this study, an inner movable and rotatable mass mechanism was proposed to generate the pitch and roll motions of an underwater glider. In addition, a buoyancy control unit was presented to adjust the displacement of the underwater glider. The buoyancy control unit could generate the heave motion of the underwater glider. In order to analyze the underwater dynamic behavior of this system, nonlinear 6-DOF dynamic equations that included mathematical models of the inner movable mass and buoyancy control unit were derived. Only kinematic characteristics such as the location of the inner movable mass and the piston position of the buoyancy control unit were considered because the velocities of these systems are very slow. The effectiveness of the proposed dynamic modeling was verified through sawtooth and spiraling motion simulations.

Dynamic response of a linear two d.o.f system visco-elastically coupled with a rigid block

  • Di Egidio, Angelo;Pagliaro, Stefano;Fabrizio, Cristiano;de Leo, Andrea M.
    • Coupled systems mechanics
    • /
    • v.8 no.4
    • /
    • pp.351-375
    • /
    • 2019
  • The present work investigates the use of a rigid rocking block as a tool to reduce vibrations in a frame structure. The study is based on a simplified model composed by a 2-DOF linear system, meant to represent a general M-DOF frame structure, coupled with a rocking rigid block through a linear visco-elastic device, which connects only the lower part of the 2-DOF system. The possibility to restrain the block directly to the ground, by means of a second visco-elastic device, is investigated as well. The dynamic response of the model under an harmonic base excitation is then analysed in order to evaluate the effectiveness of the coupling in reducing the displacements and the drift of the 2-DOF system. The nonlinear equations of motion of the coupled assemblage 2-DOF-block are obtained by a Lagrangian approach and then numerically integrated considering some reference mechanical and geometrical quantities as variable parameters. It follows an extensive parametric analysis, whose results are summarized through behaviour maps, which portray the ratio between the maximum displacements and drifts of the system, with and without the coupling with the rigid block, for several combinations of system's parameters. When the ratio of the displacements is less than unity, the coupling is considered effective. Results show that the presence of the rocking rigid block improves the dynamics of the system in large ranges of the characterizing parameters.

A Study on the Vibration Behavior of Building Structures due to Undergroud Blasting (지중발파에 의한 건물의 진동 거동에 관한 연구)

  • 조병윤;문형구
    • Tunnel and Underground Space
    • /
    • v.6 no.2
    • /
    • pp.157-165
    • /
    • 1996
  • In order to analyze the effects of ground vibration caused by underground blasting having an effect on structure, the particle velocity and acceleration are calculated by using DYNPAK program. The DYNPAK program analyzes nonlinear transient dynamic problem and adopts the very popular and easily implemented, explicit, central difference scheme. In this program, the material behavior is assumed to be elasto-viscoplastic. Using the particle acceleration history, modal analysis method is applied to the forced vibration response of multiple-degree-of-freedom(MDOF) systems using unclupled equations of motion expressed in terms of the system's natural circular frequencies and modal damping factors. AS a means of evaluating the vibration behavior of building structure subjected to underground blasting, the time response of the displacements relative to the ground of five-story building is determined. It is concluded that the amount of explosives consumed per round, the location of structure, the properties of rock medium, the stiffness fo structure, etc. act on the important factors influencing on the safety of building and that the response of a structure subjected to a forced excitation can usually be obtained with reasonable accuracy by the modal analysis of only a few mode of the lower frequencies of the system.

  • PDF

Optimum time history analysis of SDOF structures using free scale of Haar wavelet

  • Mahdavi, S.H.;Shojaee, S.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.1
    • /
    • pp.95-110
    • /
    • 2013
  • In the recent decade, practical of wavelet technique is being utilized in various domain of science. Particularly, engineers are interested to the wavelet solution method in the time series analysis. Fundamentally, seismic responses of structures against time history loading such as an earthquake, illustrates optimum capability of systems. In this paper, a procedure using particularly discrete Haar wavelet basis functions is introduced, to solve dynamic equation of motion. In the proposed approach, a straightforward formulation in a fluent manner is derived from the approximation of the displacements. For this purpose, Haar operational matrix is derived and applied in the dynamic analysis. It's free-scaled matrix converts differential equation of motion to the algebraic equations. It is shown that accuracy of dynamic responses relies on, access of load in the first step, before piecewise analysis added to the technique of equation solver in the last step for large scale of wavelet. To demonstrate the effectiveness of this scheme, improved formulations are extended to the linear and nonlinear structural dynamic analysis. The validity and effectiveness of the developed method is verified with three examples. The results were compared with those from the numerical methods such as Duhamel integration, Runge-Kutta and Wilson-${\theta}$ method.

Numerical analysis of tilted angle shear connectors in steel-concrete composite systems

  • Khorramian, Koosha;Maleki, Shervin;Shariati, Mahdi;Jalali, Abdolrahim;Tahir, M.M.
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.67-85
    • /
    • 2017
  • This study investigates numerically the behavior of tilted angle shear connectors embedded in solid concrete slabs. Two different tilted angle connectors were used, titled angle with 112.5 and 135 degrees between the angle leg and steel beam flange. A nonlinear finite element model was developed to simulate and validate the experimental push-out tests. Parametric studies were performed to investigate the variations in concrete strength and connector's dimensions. The results indicate that the ultimate strength of a tilted angle shear connector is directly related to the square root of the concrete compressive strength. The effects of variations in the geometry of tilted angle connectors on the shear capacity are discussed in details. Based on the numerical analyses, two equations are proposed to estimate the ultimate capacity of tilted angle shear connectors of 112.5 and 135 degrees in the defined range of parameters.

Battery State Estimation Algorithm for High-Capacity Lithium Secondary Battery for EVs Considering Temperature Change Characteristics

  • Park, Jinho;Lee, Byoungkuk;Jung, Do-Yang;Kim, Dong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1927-1934
    • /
    • 2018
  • In this paper, we studied the state of charge (SOC) estimation algorithm of a high-capacity lithium secondary battery for electric vehicles (EVs) considering temperature characteristics. Nonlinear characteristics of high-capacity lithium secondary batteries are represented by differential equations in the mathematical form and expressed by the state space equation through battery modeling to extract the characteristic parameters of the lithium secondary battery. Charging and discharging equipment were used to perform characteristic tests for the extraction of parameters of lithium secondary batteries at various temperatures. An extended Kalman filter (EKF) algorithm, a state observer, was used to estimate the state of the battery. The battery capacity and internal resistance of the high-capacity lithium secondary battery were investigated through battery modeling. The proposed modeling was applied to the battery pack for EVs to estimate the state of the battery. We confirmed the feasibility of the proposed study by comparing the estimated SOC values and the SOC values from the experiment. The proposed method using the EKF is expected to be highly applicable in estimating the state of the high-capacity rechargeable lithium battery pack for electric vehicles.

A Visual Servo Algorithm for Underwater Docking of an Autonomous Underwater Vehicle (AUV) (자율무인잠수정의 수중 도킹을 위한 비쥬얼 서보 제어 알고리즘)

  • 이판묵;전봉환;이종무
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • Autonomous underwater vehicles (AUVs) are unmanned, underwater vessels that are used to investigate sea environments in the study of oceanography. Docking systems are required to increase the capability of the AUVs, to recharge the batteries, and to transmit data in real time for specific underwater works, such as repented jobs at sea bed. This paper presents a visual :em control system used to dock an AUV into an underwater station. A camera mounted at the now center of the AUV is used to guide the AUV into dock. To create the visual servo control system, this paper derives an optical flow model of a camera, where the projected motions of the image plane are described with the rotational and translational velocities of the AUV. This paper combines the optical flow equation of the camera with the AUVs equation of motion, and deriver a state equation for the visual servo AUV. Further, this paper proposes a discrete-time MIMO controller, minimizing a cost function. The control inputs of the AUV are automatically generated with the projected target position on the CCD plane of the camera and with the AUVs motion. To demonstrate the effectiveness of the modeling and the control law of the visual servo AUV simulations on docking the AUV to a target station are performed with the 6-dof nonlinear equations of REMUS AUV and a CCD camera.

Mathematical Modeling of Combustion Characteristics in HVOF Thermal Spray Processes(I): Chemical Composition of Combustion Products and Adiabatic Flame Temperature (HVOF 열용사 프로세스에서의 연소특성에 관한 수학적 모델링(I): 연소생성물의 화학조성 및 단열화염온도)

  • Yang, Young-Myung;Kim, Ho-Yeon
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.1
    • /
    • pp.21-29
    • /
    • 1998
  • Mathematical modeling of combustion characteristics in HVOF thermal spray processes was carried out on the basis of equilibrium chemistry. The main objective of this work was the development of a computation code which allows to determine chemical composition of combustion products, adiabatic flame temperature, thermodynamic and transport properties. The free energy minimization method was employed with the descent Newton-Raphson technique for numerical solution of systems of nonlinear thermochemical equations. Adiabatic flame temperature was calculated by using a Newton#s iterative method incorporating the computation module of chemical composition. The performance of this code was verified by comparing computational results with data obtained by ChemKin code and in the literature. Comparisons between the calculated and measured flame temperatures showed a deviation less than 2%. It was observed that adiabatic flame temperature augments with increase in combustion pressure; the influence was significant in the region of low pressure but becomes weaker and weaker with increase in pressure. Relationships of adiabatic flame temperature, dissociation ratio and combustion pressure were also analyzed.

  • PDF