• Title/Summary/Keyword: Nonlinear Servo Control

Search Result 182, Processing Time 0.029 seconds

A bilateral servo system design for master-slave manipulators (마스터-슬레이브형 원격 조작기의 쌍방향 서보제어기 제작에 관한 연구)

  • 김기엽;박찬웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.524-527
    • /
    • 1988
  • Basic types of bilateral servo systems were described and practical consideration in the bilateral servo controller design was introduced. Power assistance to the operator is essential for high efficiency and accurate force reflection is necessary for dexterous manipulation. This paper shows a controller structure under development at KIMM which employs nonlinear friction compensation and memory based gravity compensation technique for efficiency and dexterity.

  • PDF

A Study on operating characteristics of AC Servo Motor for EV driving (EV구동용 AC Servo Motor의 운전 제특성에 관한 연구)

  • 최장균;조경재;임중열;차인수
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.92-98
    • /
    • 1998
  • In this paper various drive characteristics of a AC Servo Motor for EV(electric vehicle) and hybrid system proposed a countermeasure against air polution are presented. Since the transfer function of the plant is nonlinear and very complicated, there are difficultly in driving the system with real time. The performance of these experiments is confirmed by computer simulation results. The high performance and high accuracy of the driving system, Field oriented vector control system is proposed.

  • PDF

Control of an Electro-hydraulic Servosystem Using Neural Network with 2-Dimensional Iterative Learning Rule (2차원 반복 학습 신경망을 이용한 전기.유압 서보시스템의 제어)

  • Kwak D.H.;Lee J.K.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • This paper addresses an approximation and tracking control of recurrent neural networks(RNN) using two-dimensional iterative learning algorithm for an electro-hydraulic servo system. And two dimensional learning rule is driven in the discrete system which consists of nonlinear output function and linear input. In order to control the trajectory of position, two RNN's with the same network architecture were used. Simulation results show that two RNN's using 2-D learning algorithm are able to approximate the plant output and desired trajectory to a very high degree of a accuracy respectively and the control algorithm using two same RNN was very effective to control trajectory tracking of electro-hydraulic servo system.

  • PDF

Position Control for AC Servo Motor Using a Sliding Mode Control (슬라이딩 모드제어에 의한 교류 서보 전동기의 위치제어에 관한 연구)

  • 홍정표;홍순일
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.3
    • /
    • pp.210-215
    • /
    • 2004
  • The dynamic model of ac servo motor is influenced very much due to rotor resistance change and nonlinear characteristic. By using the sliding mode control the dynamic behavior of system can be made insensitive to plant parameter change and external disturbance. This paper describes the application of the sliding mode control for position control of ac servo motor. The control scheme is derived and designed. A design method based on external load parameters has been developed for the robust control of ac induction servo drive. The proposed control scheme are given based on the variable structure controller and slip frequency vector control. Simulated results are given to verify the proposed design method by adoption of sliding mode and show robust control for a change of shaft initial J, viscous friction B and torque disturbance.

  • PDF

A Design of Controller on the AC Servo Motor for Constant Torque Implementation (AC 서보 모우터의 일정 토크 실현을 위한 제어기 설계)

  • Yang, Nam-Yeol;Lee, Je-Hie;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1047-1050
    • /
    • 1993
  • Recently, AC servo motor has expanded its application areas the to the development of the power semi-conductor and control technology. But it has large torque ripple for its nonlinear characteristics and phase commutaion. In this paper, we proposed the switching angle overlapping method, and current control using tracking method in order to generate the constant torque of AC servo motor that has the trapezoidal back e.m.f. It is compared the these types of control method with the characteristics through simulation. We show that these methods lead the torque ripple to reduce and makes the position and speed characterlistics improved effectively. Also we prove that current control using tracking method is the best way to reduce torque ripple among the these types of control method.

  • PDF

A Study on Dynamic Characteristics Analysis and Servo Control of Linear Motor (리니어 모터의 동적특성 분석 및 서보제어에 관한 연구)

  • Sim, Hyun-Suk;Hwang, Won-Jun;Lee, Woo-Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.1
    • /
    • pp.53-60
    • /
    • 2015
  • For high-accuracy position control of a linear motor, it has been proposed a nonlinear controller including a synchronization algorithm. Linear motors are easily affected by force ripple, friction, and parameter variations because there is no mechanical transmission to reduce the effects of model uncertainties and external disturbances. Synchronization error is also caused by skew motion, model uncertainties, and force disturbance on each axis. Nonlinear effects such as friction and ripple force are estimated and compensated for. The synchronization algorithm is used to reduce the synchronous error of the two side pillars. The performance of the controller is evaluated by computer simulations.

Design of an ILQ Looper Controller for Rot Strip Mills (열간사상압연기의 루퍼시스템의 ILQ 제어기 설계)

  • Kim, Seong-Bae;Hwang, Lee-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1680-1689
    • /
    • 2002
  • This paper studies on the design of a looper control system for hot strip mill finisher using ILQ(Inverse Linear Quadratic optimal control) control method. The loopers are placed between each rolling stands and looper control plays an important role in regulating strip tension. The strip tension is controlled by raising and lowering the looper and by changing the speed of main work rolls. Firstly, it is shown from a nonlinear dynamic simulation that the strip tension is more influenced by difference of rolling speed than that of the looper angle. Secondly, a servo controller of the looper is designed using ILQ control method of which the characteristics and algorithms are simply introduced. Finally, the performances of the ILQ servo controller are compared with those of the LQI servo controller from computer simulation. In result, it is shown that the proposed ILQ servo controller has the better performances and robustness far parameter perturbations and disturbances than those of LQI controller.

A study on the performance improvement of hydraulic position control system using series-feedback compensator (직렬 피이드백 보상기를 이용한 위치제어 유압시스템의 성능향상에 관한 연구)

  • 이교일;이종극
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.332-337
    • /
    • 1988
  • A digital series-feedback compensator algorithm for tracking time-varying signal is presented. The series-feedback compensator is composed of one closed loop pole / zero cancellation compensator and one desired-input generator. This algorithm is applied to nonlinear hydraulic position control system. The hydraulic servo system is modelled as a second order linear model and cancellation compensator is modelled from it. The desired input generator is inserted to reduce modelling error. Digital computer simulation output using this control method is present and the usefulness of this control algorithm for nonlinear hydraulic system is verified.

  • PDF

Cross-Coupled Control for Multi-axes Servo System (다축 서보시스템의 상호결합 제어)

  • Kang, Myung-Goo;Lee, Je-Hie;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.186-188
    • /
    • 1995
  • In this paper, Cross-Coupled Controller proposed for multi axes servo system. Tracking error and contouring error exist when a machine tool moves along the trajectory in multi exes system. The proposed scheme enhances the contouring performance by reducing contour error. Feedforward compensator reduces the effects of a nonlinear disturbance such as friction or dead zone. The proposed control scheme reduces the contour error which occured when the tool tracks the reference trajectory. Simulation results show that this scheme improves the contouring performance along the reference trajectory in XY-table.

  • PDF

A Design of the Robust Servo Controller for DC Servo-Motor Using Genetic Algorithm (유전알고리즘을 이용한 강인한 DC 서보제어기의 설계)

  • Kim, Dong-Wan;Hwang, Gi-Hyun;Hwang, Hyun-Joon;Nam, Jing-Lak;Park, June-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.812-814
    • /
    • 1999
  • In this paper, we are applied the Genetic Algorithm (GA) to design of fuzzy logic controller (FLC) for a DC Servo-Motor Speed Control. GA is used to design of the membership functions and scaling factor of FLC. To evaluate the performances of the proposed FLC, we make an experiment on FLC for the speed control of an actual DC servo-motor system with nonlinear characteristics. Experimental results show that proposed controller have better performance than those of PD controller.

  • PDF