• Title/Summary/Keyword: Nonlinear Servo Control

Search Result 182, Processing Time 0.025 seconds

Velocity Control of Hydraulic Servo System with Heavy Load and Large Capacitya (대부하 대용량 유압 서보 시스템의 속도제어)

  • 이교일;이경수;이대옥
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.669-672
    • /
    • 1986
  • The velocity control of hydraulic servo system with heavy load and large capacity was investigated through the linear analysis and digital computer simulation. Each part of the nonlinear hydraulic servo system was mathmatically modelled. The result of linear analysis and computer simulation showed that the use of derivative of load pressure as a feedback signal is effective in velocity control.

  • PDF

Nonlinear Hydraulic System Control Using Fuzzy PID Control Technique (퍼지 PID 제어 기법을 이용한 비선형 유압시스템의 제어)

  • 박장호;김종화;류기석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.69-69
    • /
    • 2000
  • Control systems using a hydraulic cylinder as an actuator are modeled to a nonlinear system owing to varying of moments and nonlinearities of hydraulic itself. In this paper, we want to control nonlinear hydraulic systems by adopting the fuzzy PID control technique which include nonlinear time varying control parameters. To do this, we propose the design method of fuzzy Pm controller and in order to assure effectiveness of fuzzy PID controller, computer simulations were executed for the control system.

  • PDF

A study on the torque characteristic of AC servo system by phase advance control (진상각 제어에 따른 AC 서보 모터의 토오크 특성에 관한 연구)

  • 임윤택;손명훈;허욱열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.393-400
    • /
    • 1992
  • The DC(Direct-Current) servo motor has widely used for many application areas, FA(Factory Automation), OA(Office Automation) and home applications. But DC servo motor needs periodical inspection because it has brush and commutator. Recently, AC servo motor has expanded it's application areas due to for the development of the power semi-conductor and control technology. But it has large torque ripple for it's small number of commutation. And it also has cogging torque due to permanent magenet rotor. Therefore it can't run balence rotarion. Many torque ripple reduction methods are published. In this paper, phase advanced method adopted for torque ripple reduction of AC servo motor. In this research, AC servo motor torque characteristic variation surveied under the phase advance control through the computer simulation. Under the simulation, the load inertia varied from 0.0001[Kg.m$^{2}$] to 0.0314[Kg.m$^{2}$]. The result os nonlinear simulation, torque and speed ripple of AC servo motor under the phase advance control reduced approximately 50[%] and 10[%]. And maximum torque of AC servo motor under phase advance control condition increased about 5[%] as compare with fixed switching time.

  • PDF

$\mu$-Controller Design for Servo Systems Containing Resonance Effects and Coulomb Frictions (공진 효과 및 쿨롱 마찰이 있는 서보 시스템에 대한 $\mu$-제어기 설계)

  • Hwang, In-Hui;Lim, Dong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.46-48
    • /
    • 1996
  • In almost all the servo systems, especially for the robot manipulators and numerical control systems, there are resonance effects and nonlinear frictions which should be considered in designing servo controllers. In this paper to compensate friction and track the step-input without steady-state error, the original system is augmented with an integrator and employes $\mu$-Controller design method $\mu$-Controller design method enables to meet not only performance requirements but robust stabilities simultaneously. And there may exist a limit cycles due to interaction between integrator and nonlinear friction. With describing function method, the possibility of limit cycle is checked.

  • PDF

Tracking Control of a Electro-hydraulic Servo System Using 2-Dimensional Real-Time Iterative Learning Algorithm (실시간 2차원 학습 신경망을 이용한 전기.유압 서보시스템의 추적제어)

  • 곽동훈;조규승;정봉호;이진걸
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.6
    • /
    • pp.435-441
    • /
    • 2003
  • This paper addresses that an approximation and tracking control of realtime recurrent neural networks(RTRN) using two-dimensional iterative teaming algorithm for an electro-hydraulic servo system. Two dimensional learning rule is driven in the discrete system which consists of nonlinear output fuction and linear input. In order to control the trajectory of position, two RTRN with the same network architecture were used. Simulation results show that two RTRN using 2-D learning algorithm are able to approximate the plant output and desired trajectory to a very high degree of a accuracy respectively and the control algorithm using two identical RTRN was very effective to trajectory tracking of the electro-hydraulic servo system.

Concurrent Relay-PID Control for Motor Position Servo Systems

  • Li, Guomin;Tsang, Kai Ming
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.234-242
    • /
    • 2007
  • A Concurrent Relay-PID controller (CRPID) for motor position servo systems is proposed in this paper. The proposed controller is composed of a deadband-relay subcontroller and a parallel PID subcontroller. The deadband-relay subcontroller is capable of improving the transient system performance while the PID subcontroller is responsible for near steady state system regulation. Systematic design methods for various controller components are developed. Design procedures are illustrated by an example. The proposed hybrid scheme is applied to a DC motor position servo system. Both numerical and experimental results demonstrate that the proposed controller performs satisfactorily and is superior to PID control alone.

Nonlinear adaptive control for position tracking of AC servo-motors (AC 서보 모터의 위치제어를 위한 비선형 적응제어)

  • 이현배;박정동;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.314-317
    • /
    • 1996
  • In this paper, we present a nonlinear adaptive controller for position tracking of induction motors. In constructing the adaptive controller, a backstepping approach is used under the condition of full state information, while a nonlinear observer is adopted for rotor flux estimation. The adaptive controller is shown to drive the state variables of system to the desired ones asymptotically and whose effectiveness is also shown via computer simulation.

  • PDF

Robust Digital Nonlinear Friction Compensation (견실한 비선형 마찰보상 이산제어)

  • 강민식;송원길;김창재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.987-993
    • /
    • 1996
  • This report suggests a new non-linear friction compensation for digital control systems. This control adopts a hysteric nonlinear clement which can introduce the phase lead of the control system to compensate the phase delay comes from the inherent time delay of a digital control. The Lyapunov direct method is used to prove the asymtotic stability of the suggested control, and the stability and the effectiveness are verified analytically and experimentally on a single axis servo driving system.

  • PDF

Friction Compensation For High Precision Control of Servo Systems Using Adaptive Neural Network

  • Chung, Dae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.179-179
    • /
    • 2000
  • An adaptive neural network compensator for stick-slip friction phenomena in servo systems is proposed to supplement the traditionally available position and velocity control loops for precise motion control. The neural network compensator plays a role of canceling the effect of nonlinear slipping friction force. This enables the mechatronic systems more precise control and realistic design in the digital computer. It was confirmed that the control accuracy is more improved near zero velocity and the points of changing the moving direction through numerical simulation

  • PDF

Robust Control of the Nonlinear Hydraulic Servo System Using a PID Control Technique (PID 제어 기술을 이용한 비선형 유압 시스템의 강인 제어)

  • Yu, Sam-Hyeon;Lee, Jong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.850-856
    • /
    • 2001
  • Even though the hydraulic servo system has been widely used in industrial and military equipments since it has a lot of advantages, it is not easy to design controller due to the high nonlinearities and the parametric uncertainties. The dynamic behavior of the real process in the hydraulic servo system differs from that described by its model because the model is linearized. Another reason of the difference is caused by the variety of parameters, since the system parameters of the dynamic equation are affected by the operating conditions such as temperature and pressure. In this study, the designing process of the MRNC with a PID compensator is introduced and applied to the load sensing hydraulic servo system. The results show that the designed controller guarantees the robust control performance despite of both the nonlinearities and the parametric uncertainties.