• 제목/요약/키워드: Nonlinear Principal Component Analysis

검색결과 57건 처리시간 0.019초

Arrow Diagrams for Kernel Principal Component Analysis

  • Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • 제20권3호
    • /
    • pp.175-184
    • /
    • 2013
  • Kernel principal component analysis(PCA) maps observations in nonlinear feature space to a reduced dimensional plane of principal components. We do not need to specify the feature space explicitly because the procedure uses the kernel trick. In this paper, we propose a graphical scheme to represent variables in the kernel principal component analysis. In addition, we propose an index for individual variables to measure the importance in the principal component plane.

Blind Source Separation via Principal Component Analysis

  • Choi, Seung-Jin
    • Journal of KIEE
    • /
    • 제11권1호
    • /
    • pp.1-7
    • /
    • 2001
  • Various methods for blind source separation (BSS) are based on independent component analysis (ICA) which can be viewed as a nonlinear extension of principal component analysis (PCA). Most existing ICA methods require certain nonlinear functions (which leads to higher-order statistics) depending on the probability distributions of sources, whereas PCA is a linear learning method based on second-order statistics. In this paper we show that the PCA can be applied to the task of BBS, provided that source are spatially uncorrelated but temporally correlated. Since the resulting method is based on only second-order statistics, it avoids the nonlinear function and is able to separate mixtures of several colored Gaussian sources, in contrast to the conventional ICA methods.

  • PDF

클래스가 부가된 커널 주성분분석을 이용한 비선형 특징추출 (Nonlinear Feature Extraction using Class-augmented Kernel PCA)

  • 박명수;오상록
    • 전자공학회논문지SC
    • /
    • 제48권5호
    • /
    • pp.7-12
    • /
    • 2011
  • 본 논문에서는 자료패턴을 분류하기에 적합한 특징을 추출하는 방법인, 클래스가 부가된 커널 주성분분석(class-augmented kernel principal component analysis)를 새로이 제안하였다. 특징추출에 널리 이용되는 부분공간 기법 중, 최근 제안된 클래스가 부가된 주성분분석(class-augmented principal component analysis)은 패턴 분류를 위한 특징을 추출하기 위해 이용되는 선형분류분석(linear discriminant analysis)등에 비해 정확한 특징을 계산상의 문제 없이 추출할 수 있는 기법이다. 그러나, 추출되는 특징은 입력의 선형조합으로 제한되어 자료에 따라 적절한 특징을 추출하기 어려운 경우가 발생한다. 이를 해결하기 위하여 클래스가 부가된 주성분분석에 커널 트릭을 적용하여 비선형 특징을 추출할 수 있는 새로운 부분공간 기법으로 확장하고, 실험을 통하여 성능을 평가하였다.

Incremental Eigenspace Model Applied To Kernel Principal Component Analysis

  • Kim, Byung-Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권2호
    • /
    • pp.345-354
    • /
    • 2003
  • An incremental kernel principal component analysis(IKPCA) is proposed for the nonlinear feature extraction from the data. The problem of batch kernel principal component analysis(KPCA) is that the computation becomes prohibitive when the data set is large. Another problem is that, in order to update the eigenvectors with another data, the whole eigenvectors should be recomputed. IKPCA overcomes this problem by incrementally updating the eigenspace model. IKPCA is more efficient in memory requirement than a batch KPCA and can be easily improved by re-learning the data. In our experiments we show that IKPCA is comparable in performance to a batch KPCA for the classification problem on nonlinear data set.

  • PDF

지도학습기법을 이용한 비선형 다변량 공정의 비정상 상태 탐지 (Abnormality Detection to Non-linear Multivariate Process Using Supervised Learning Methods)

  • 손영태;윤덕균
    • 산업공학
    • /
    • 제24권1호
    • /
    • pp.8-14
    • /
    • 2011
  • Principal Component Analysis (PCA) reduces the dimensionality of the process by creating a new set of variables, Principal components (PCs), which attempt to reflect the true underlying process dimension. However, for highly nonlinear processes, this form of monitoring may not be efficient since the process dimensionality can't be represented by a small number of PCs. Examples include the process of semiconductors, pharmaceuticals and chemicals. Nonlinear correlated process variables can be reduced to a set of nonlinear principal components, through the application of Kernel Principal Component Analysis (KPCA). Support Vector Data Description (SVDD) which has roots in a supervised learning theory is a training algorithm based on structural risk minimization. Its control limit does not depend on the distribution, but adapts to the real data. So, in this paper proposes a non-linear process monitoring technique based on supervised learning methods and KPCA. Through simulated examples, it has been shown that the proposed monitoring chart is more effective than $T^2$ chart for nonlinear processes.

비선형 특징 추출을 위한 온라인 비선형 주성분분석 기법 (On-line Nonlinear Principal Component Analysis for Nonlinear Feature Extraction)

  • 김병주;심주용;황창하;김일곤
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권3호
    • /
    • pp.361-368
    • /
    • 2004
  • 본 논문에서는 온라인 학습 자료의 비선형 특징(feature) 추출을 위한 새로운 온라인 비선형 주성분분석(OL-NPCA : On-line Nonlinear Principal Component Analysis) 기법을 제안한다. 비선형 특징 추출을 위한 대표적인 방법으로 커널 주성분방법(Kernel PCA)이 사용되고 있는데 기존의 커널 주성분 분석 방법은 다음과 같은 단점이 있다. 첫째 커널 주성분 분석 방법을 N 개의 학습 자료에 적용할 때 N${\times}$N크기의 커널 행렬의 저장 및 고유벡터를 계산하여야 하는데, N의 크기가 큰 경우에는 수행에 문제가 된다. 두 번째 문제는 새로운 학습 자료의 추가에 의한 고유공간을 새로 계산해야 하는 단점이 있다. OL-NPCA는 이러한 문제점들을 점진적인 고유공간 갱신 기법과 특징 사상 함수에 의해 해결하였다. Toy 데이타와 대용량 데이타에 대한 실험을 통해 OL-NPCA는 다음과 같은 장점을 나타낸다. 첫째 메모리 요구량에 있어 기존의 커널 주성분분석 방법에 비해 상당히 효율적이다. 두 번째 수행 성능에 있어 커널 주성분 분석과 유사한 성능을 나타내었다. 또한 제안된 OL-NPCA 방법은 재학습에 의해 쉽게 성능이 항상 되는 장점을 가지고 있다.

아이소맵을 이용한 결함 탐지 비교 연구 (A Comparative Study on Isomap-based Damage Localization)

  • 고봉환;정민중
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2011년도 정기 학술대회
    • /
    • pp.278-281
    • /
    • 2011
  • The global coordinates generated from Isomap algorithm provide a simple way to analyze and manipulate high dimensional observations in terms of their intrinsic nonlinear degrees of freedom. Thus, Isomap can find globally meaningful coordinates and nonlinear structure of complex data sets, while neither principal component analysis (PCA) nor multidimensional scaling (MDS) are successful in many cases. It is demonstrated that the adapted Isomap algorithm successfully enhances the quality of pattern classification for damage identification in various numerical examples.

  • PDF

모멘트를 이용한 비선형 주요성분분석 신경망의 효율적인 학습알고리즘 (An efficient learning algorithm of nonlinear PCA neural networks using momentum)

  • 조용현
    • 한국산업융합학회 논문집
    • /
    • 제3권4호
    • /
    • pp.361-367
    • /
    • 2000
  • This paper proposes an efficient feature extraction of the image data using nonlinear principal component analysis neural networks of a new learning algorithm. The proposed method is a learning algorithm with momentum for reflecting the past trends. It is to get the better performance by restraining an oscillation due to converge the global optimum. The proposed algorithm has been applied to the cancer image of $256{\times}256$ pixels and the coin image of $128{\times}128$ pixels respectively. The simulation results show that the proposed algorithm has better performances of the convergence and the nonlinear feature extraction, in comparison with those using the backpropagation and the conventional nonlinear PCA neural networks.

  • PDF

The Kernel Trick for Content-Based Media Retrieval in Online Social Networks

  • Cha, Guang-Ho
    • Journal of Information Processing Systems
    • /
    • 제17권5호
    • /
    • pp.1020-1033
    • /
    • 2021
  • Nowadays, online or mobile social network services (SNS) are very popular and widely spread in our society and daily lives to instantly share, disseminate, and search information. In particular, SNS such as YouTube, Flickr, Facebook, and Amazon allow users to upload billions of images or videos and also provide a number of multimedia information to users. Information retrieval in multimedia-rich SNS is very useful but challenging task. Content-based media retrieval (CBMR) is the process of obtaining the relevant image or video objects for a given query from a collection of information sources. However, CBMR suffers from the dimensionality curse due to inherent high dimensionality features of media data. This paper investigates the effectiveness of the kernel trick in CBMR, specifically, the kernel principal component analysis (KPCA) for dimensionality reduction. KPCA is a nonlinear extension of linear principal component analysis (LPCA) to discovering nonlinear embeddings using the kernel trick. The fundamental idea of KPCA is mapping the input data into a highdimensional feature space through a nonlinear kernel function and then computing the principal components on that mapped space. This paper investigates the potential of KPCA in CBMR for feature extraction or dimensionality reduction. Using the Gaussian kernel in our experiments, we compute the principal components of an image dataset in the transformed space and then we use them as new feature dimensions for the image dataset. Moreover, KPCA can be applied to other many domains including CBMR, where LPCA has been used to extract features and where the nonlinear extension would be effective. Our results from extensive experiments demonstrate that the potential of KPCA is very encouraging compared with LPCA in CBMR.

AANN-기반 센서 고장 검출 기법의 센서 네트워크에의 적용 (Application of Sensor Fault Detection Scheme Based on AANN to Sensor Network)

  • 이영삼;김성호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.229-231
    • /
    • 2006
  • NLPCA(Nonlinear Principal Component Analysis) is a novel technique for multivariate data analysis, similar to the well-known method of principal component analysis. NLPCA operates by a feedforward neural network called AANN(Auto Associative Neural Network) which performs the identity mapping. In this work, a sensor fault detection system based on NLPCA is presented. To verify its applicability, simulation study on the data supplied from sensor network is executed.

  • PDF