• Title/Summary/Keyword: Nonlinear PID Controller

Search Result 244, Processing Time 0.022 seconds

Analysis of Dynamic Model and Design of Optimized Fuzzy PID Controller for Constant Pressure Control (정압제어를 위한 동적모델 해석 및 최적 퍼지 PID 제어기설계)

  • Oh, Sung-Kwun;Cho, Se-Hee;Lee, Seung-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.303-311
    • /
    • 2012
  • In this study, we introduce a dynamic process model as well as the design methodology of optimized fuzzy controller for its efficient application to vacuum production system to produce a semiconductor, solar module and display and so on. In a vacuum control field, PID control method is widely used from the viewpoint of simple structure and preferred performance. But, PID control method is very sensitive to the change of environment of control system as well as the change of control parameters. Therefore, it's difficult to get a preferred performance results from target system which has a complicated structure and lots of nonlinear factors. To solve such problem, we propose the design methodology of an optimized fuzzy PID controller through a following series of steps. First a dynamic characteristic of the target system is analyzed through a series of experiments. Second the process model is built up and its characteristic is compared with real process. Third, the optimized fuzzy PID controller is designed using genetic algorithms. Finally, the fuzzy controller is applied to target system and then its performance is compared with that of other conventional controllers(PID, PI, and Fuzzy PI controller). The performance of the proposed fuzzy controller is evaluated in terms of auto-tuned control parameters and output responses considered by ITAE index, overshoot, rise time and steady state time.

Tension Control Using Adaptive PID Controller in the Two-Drum Winder Web Transport System (Two-Drum Winder 권취 공정 시스템에서의 적용 PID 제어기를 이용한 장력제어)

  • Park, Seung-Gyu;Lee, Dong-Bin;Yim, Hwa-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.9
    • /
    • pp.813-821
    • /
    • 2000
  • In this paper, we developed modeling of tension and speed dynamics for a two-drum winder in a three span continuous web transport system which had not been previously. Dynamic modeling of the time-varying nonlinear system was derived by considering the effect of the radii and mass moment of inertia in the unwinder and the two-drum winder through winding up the web. After linearizing it, we designed with a variable-gain a PID controller for tension control and a PI controller for speed. Simulation is carried out with the variation of radii and moment of inertia at high speed for the proposed tension control system with the two-drum winder and the variavle-gain a PID controller. Results show good performance of tension control during the speed change speed at a start-up and stop.

  • PDF

Comparison of PID Controllers by Using Linear and Nonlinear Models for Control of Mobile Robot Driving System (모바일 로봇 구동 시스템 제어를 위한 선형 및 비선형 모델 기반 PID 제어기 성능 비교)

  • Jang, Tae Ho;Kim, Youngshik;Kim, Hyeontae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.3
    • /
    • pp.183-190
    • /
    • 2016
  • In this study, we conduct linear and nonlinear modeling of the DC motor driving system of a wheeled mobile robot, which is a nonlinear system involving dead zone, friction, and saturation. The DC motor driving system consists of a DC motor, a wheel, and gears. A linear DC motor driving system is modeled using a steady-state response and parameter measurements. A nonlinear DC motor driving model is identified with the use of the Hammerstein-Wiener method. By using these models, PID controllers for the DC motor system are then established. Each PID controller is applied as a low-level controller in order to achieve posture stabilization control for the real mobile robot. We also compare the performance of the proposed PID controllers in posture stabilization experiments by using several different final robot postures.

Design of a Self-tuning Controller with a PID Structure Using Neural Network (신경회로망을 이용한 PID구조를 갖는 자기동조제어기의 설계)

  • Cho, Won-Chul;Jeong, In-Gab;Shim, Tae-Eun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.1-8
    • /
    • 2002
  • This paper presents a generalized minimum-variance self-tuning controller with a PID structure using neural network which adapts to the changing parameters of the nonlinear system with nonminimum phase behavior and time delays. The neural network is used to estimate the controller parameters, and the control output is obtained through estimated controller parameter. In order to demonstrate the effectiveness of the proposed algorithm, the computer simulation is done to adapt the nonlinear nonminimum phase system with time delays and changed system parameter after a constant time. The proposed method compared with direct adaptive controller using neural network.

Rotary inverted pendulum control using PID-neural network controller (PID-신경망 제어기를 이용한 rotary inverted pendulum 제어)

  • 선권석
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.901-904
    • /
    • 1998
  • In this paper, we describes PID-neural network controller for the rotary inverted pendulum. PID control is applied to many fields but has some problems in nonlinear system due to a variation of parameter. So, we should desing the controller which is adjusted PI parameters by the neural network which is learned by backpropagation algorithm. And we show that on-line control is possible through the PID-neural network controller. The angle of the pendulum is controlled and then the position of the rotating arm is also controlled to maintain with in the set point. Measurement of the pendulum angle is obtained using a potentionmeter. The objective of the experiment is to design a PID-neural network control system that positions the arm as well as maintains the ivnerted pendulum vertical. Finally, we describe the actual experiment system and confirm the experimental results.

  • PDF

Motion Control of Inchworm using Input Shaping and Genetic Algorithm (입력 성형과 유전 알고리즘에 의한 자벌레 운동제어)

  • Kim, In-Soo;Kim, Ki-Bum;Park, Seung-Min
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.3
    • /
    • pp.313-319
    • /
    • 2017
  • This study presents a genetic algorithm (GA) to design a PID controller systematically for an inchworm operated by piezoelectric actuators. The performance index considering overshoot and settling time is adopted to search an optimal PID gain using GA. The piezoelectric actuator shows nonlinear characteristics including hysteresis and residual displacement. The PID feedback system combined with an integrator is used to improve the ability of tracking the complex input signals and suppressing the steady state error. The PID controller tuned by GA can track the various motion contours effectively. However, the PID controller shows an improper residual vibration under the application of high-frequency square input. The input shaper combined with the feedback system can overcome this limitation of the PID controller.

Experimental Study of GA and Heuristic Control Rule based PID Controller for 2-Dimensional Inverted Pendulum (2차원 도립진자를 위한 GA 및 Heuristic한 제어규칙 기반 PID제어기의 실험적 연구)

  • 서강면;강문성
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.8
    • /
    • pp.623-631
    • /
    • 2003
  • We have fabricated the two-dimensional inverted pendulum system and designed its controller. The two-dimensional inverted pendulum system, which is composed of X-Y table, is actuated through timing belt by each of two geared DC motors. And the control goal is that the rod is always kept to a vertical position to any distrubance and is quickly moved to the desired position. Because this system has generally nonlinear dynamic characteristics and X-axis and Y-axis move together, it is very difficult to find its exact mathematical model and to design its controller. Therefore, we have designed the PID controller with simple structure and excellent performance. Genetic algorithm(GA), which is blown as one of probabilistic searching methods, and human's heuristic control strategy are introduced to design an optimal PID controller. The usefulness of the proposed GA based PID coefficient searching technique is verified through the experiments and computer simulations.

A nonlinear PID control of winding tension using contact roll (접압롤을 이용한 권취장력의 비선형 PID 제어)

  • Shin, K.H;Kim, K.T;Cheon, S.M
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2029-2037
    • /
    • 1997
  • In a web winding process, the contact roll plays many important roles including air-entrainment control and WIT(Wound In Tension) regulation. The behavior of contact roll significantly affects the winding tension characteristics specifically at the time of contact when the speeds of contact roll and the winding roll are not synchronized. A mathematical model for the web, the winding roll, and the contact roll is derived. By using the model derived, a nonlinear PID(NPID) controller is designed to control the winding tension at the time of contact and separation between the contact roll and the winding roll. Computer simulation study showed that the performance of the winding system with the NPID controller significantly improved compared with that of a system with PID controller.

PID Autotuning Algorithm Based on Saturation Function Feedback

  • Oh, Seung-Rohk
    • Journal of IKEEE
    • /
    • v.2 no.2 s.3
    • /
    • pp.263-269
    • /
    • 1998
  • We use the slope bounded saturation nonlinear feedback element instead of relay to find ultimate gain and period of linear plant. Saturation nonlinear element reduces the high harmonics of plant output. The reduction of high harmonics improve the accuracy of describing function method used to find ultimate gain and period. We give a simple procedure to find ultimate gain and period with saturation nonlinear element. A PID controller design method with known time delay element is also given, which is very useful when oscillation is not occurred with nonlinear element.

  • PDF

Concurrent Relay-PID Control for Motor Position Servo Systems

  • Li, Guomin;Tsang, Kai Ming
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.234-242
    • /
    • 2007
  • A Concurrent Relay-PID controller (CRPID) for motor position servo systems is proposed in this paper. The proposed controller is composed of a deadband-relay subcontroller and a parallel PID subcontroller. The deadband-relay subcontroller is capable of improving the transient system performance while the PID subcontroller is responsible for near steady state system regulation. Systematic design methods for various controller components are developed. Design procedures are illustrated by an example. The proposed hybrid scheme is applied to a DC motor position servo system. Both numerical and experimental results demonstrate that the proposed controller performs satisfactorily and is superior to PID control alone.