• Title/Summary/Keyword: Nonlinear PI Control

Search Result 157, Processing Time 0.032 seconds

An Implementation of PI Controller for the Position Control of Mobile Robot Using LabVIEW (LabVIEW를 이용한 이동로봇 위치제어를 위한 PI제어기 구현)

  • Park, Young-Hwan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.259-263
    • /
    • 2008
  • The dynamics of mobile robot is nonlinear. To cope with this nonlinearity, many advanced control schemes have been proposed recently. Generally, the advanced control schemes are complicated and not good for the practical real-time control when they are implemented as control programs. So, in this paper, a relatively simple PI controller is proposed and applied to the position control of mobile robot with the adoption of reference trajectory calculation method used for the AUV(Autonomous Underwater Vehicle) control. The proposed PI controller is programmed using LabVIEW which is popular for its graphical programming characteristics. The simulation and experimental results show the feasibility and effectiveness of the proposed PI controller.

  • PDF

Current Control of Switched Reluctance Motor Using Self-tuning Fuzzy Controller (자기동조 퍼지 제어기를 이용한 스위치드 릴럭턴스 모터의 전류제어)

  • Lee, Young-Soo;Kim, Jaehyuck;Oh, Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.473-479
    • /
    • 2016
  • This paper describes an accurate and stable current control method of switched reluctance motors(SRMs), which have recently attracted considerable wide attention owing to their favorable features, such as high performance, high durability, structural simplicity, low cost, etc. In most cases, the PI controllers(PICC) have been used mostly for the current control of electric motors because their algorithm and selection of controller gain are relatively simpler compared to other controllers. On the other hand, the PI controller requires an adjustment of the controller gains for each operating point when nonlinear system parameters change rapidly. This paper presents a stable current control method of an SRM using self-tuning fuzzy current controller(STFCC) under nonlinear parameter variation. The performance of the considered method is validated via a dynamic simulation of the current controlled SRM drive using Matlab/Simulink program.

Identification and Control of Command Panoramic Sight System (조준경안정화시스템의 인식과 제어)

  • Kim, Dae-Woon;Cheon, Soon-Yong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.3
    • /
    • pp.14-21
    • /
    • 2007
  • Sight Stabilization system is the control system to preserve Line of Sight for the targets though many nonlinear disturbances and vibrations are generated. In this paper, we identified Stabilization system using RLS algorithm, one of the system identification algorithm and found out the modeling of system. Considering nonlinear operational condition this paper proposes two Knowledge-base controllers - Fuzzy controller, Fuzzy PI Gain Scheduling controller, and simulates the performances of proposed controllers compare with Lead PI controller being used in Sight system of NFIV.

Vehicle traction control using fuzzy logic algorithm (퍼지 로직 알고리듬을 이용한 차량 구동력 제어)

  • 박성훈;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.680-683
    • /
    • 1996
  • The dynamics of the vehicle system has highly nonlinear components such as an engine, a torque converter and variable road condition. This thesis proposes a Fuzzy Logic Algorithm that shows better control performance than Antiwindup PI in the highly nonlinear vehicle system. Traction Control System(TCS), which adjusts throttle valve opening by Fuzzy Logic Algorithm improves vehicle drivability, steerability and stability when vehicle is starting and cornering. When a throttle valve is opened at large degree, Fuzzy Logic Algorithm shows better performances like a small settling time and a small oscillation than Antiwindup PI in simulation. The decreased desired slip ratio improves steerability in the simulation when a vehicle is cornering. The Fuzzy Logic Algorithm has been tested by a 1/5-scale vehicle for tracking the constant desired velocity.

  • PDF

PI-CCC Based Switched Reluctance Generator Applications for Wind Power Generation Using MATLAB/SIMULINK

  • Kaliyappan, Kannan;Padmanabhan, Sutha
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.230-237
    • /
    • 2013
  • This paper presents a novel nonlinear model of Switched Reluctance Generator (SRG) based on wind Energy Conversion system. Closed loop control with based Proportional Integrator current Chopping Control machine model is used. A Power converter in SRG can be controlled by using PI-CCC proposed model, and can be produced maximum power efficiency and minimize the ripple contents in the output of SRG. A second power converter namely PI based controlled PWM Inverter is used to interface the machine to the Grid. An effective control technique for the inverter, based on the pulse width modulation (PWM) scheme, has been developed to make the line voltage needs less power switching devices and each pair of turbine the generated active power starts increasing smoothly. This proposed control scheme feasibility and validity are simulated on SIMULINK/SIM POWER SYSTEMS only.

ADAPTIVE PI FUZZY CONTROLLER FOR INDUCTION MOTOR USING FEEDBACK LINEARIZING METHOD

  • Motlagh, Muhammad Reza Jahed;Hajatipour, Majid
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.514-518
    • /
    • 2005
  • In this paper an adaptive fuzzy PI controller with feedback linearizing meth od is implemented to controlling flux and torque separately in induction motor. In this paper first decoupling of torque and flux which are outputs to be controlled, is achieved by using feedback linearization methodology. Then for reducing the effect of noise and rejection of disturbance, main part of controller which is adaptive PI fuzzy controller, is designed. Coefficients of PI controller are determined by defined fuzzy rules due to error dynamic. Inputs of fuzzy system are defined sliding surfaces which consist of torque and flux errors. The main contribution of this paper is effect reduction of noise and disturbance on torque and flux which is based on fuzzy logic and nonlinear control. At last the effectiveness of the proposed control scheme in presence of noise and load disturbance is simulated and comprised to applying sliding method. The results verify better effectiveness of the proposed method for effect reduction of noise and disturbance.

  • PDF

Speed Control of DC Motors Using Inverse Dynamics (역동력학을 이용한 DC 모터의 속도제어)

  • 김병만;손영득;하윤수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.97-102
    • /
    • 2000
  • In this paper, a methodology for designing a controller based on inverse dynamics for speed control of DC motors is presented. The proposed controller consists of a prefilter, the inverse dynamic model of a system and the PI controller. The prefilter prevents high frequency effects from the inverse dynamic model. The model of the system in characterized by a nonlinear equation with coulomb friction. The PI controller regulates the error between the set-point and the system output which may be caused by modeling error, variations of parameters and disturbances. The output which may be caused by modeling error, variations of parameters and disturbances. The parameters of the model and the PI controller are adjusted offlinely by a genetic algorithm. An experimental work on a DC motor system is carried out to illustrate the performance of the proposed controller.

  • PDF

Performance Improvement of Zero Voltage Switching PWM Half Bridge DC/DC Converter Using Time Delay Control Method (시간 지연 제어를 이용한 영전압 스위칭 PWM 하프 브릿지 컨버터의 제어 성능 개선)

  • 강정일;정영석;이준영;윤명중
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.85-89
    • /
    • 1998
  • A switching power stage is a very nonlinear system because it has two or more operation modes in one switching cycle. To model a switching power stage, the state space averaging method has been developed. Though it allows a unified treatment of a large variety of switching power stages, the model it yields is always very nonlinear. So, it is required to linearize the averaged model. But it is well known that a controller for a nonlinear plant designed by the linearization frequently fails in showing satisfactory control performance. Hence it is very natural to try to design a nonlinear controller for a switching power stage. In design of a switching power system, nonlinear control approaches such as adaptive control and fuzzy control have been widely studied so far. In this research, a recently developed control method, time delay control is briefly studied and a design example for a ZVS PWM half bridge converter is given. The performance of the time delay controller is compared to its conventional counterpart, PI controller by computer simulations.

  • PDF

Control and Operation of Hybrid Microsource System Using Advanced Fuzzy- Robust Controller

  • Hong, Won-Pyo;Ko, Hee-Sang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.29-40
    • /
    • 2009
  • This paper proposes a modeling and controller design approach for a hybrid wind power generation system that considers a fixed wind-turbine and a dump load. Since operating conditions are kept changing, it is challenge to design a control for reliable operation of the overall system To consider variable operating conditions, Takagi-Sugeno (TS) fuzzy model is taken into account to represent time-varying system by expressing the local dynamics of a nonlinear system through sub-systems, partitioned by linguistic rules. Also, each fuzzy model has uncertainty. Thus, in this paper, a modem nonlinear control design technique, the sliding mode nonlinear control design, is utilized for robust control mechanism In the simulation study, the proposed controller is compared with a proportional-integral (PI) controller. Simulation results show that the proposed controller is more effective against disturbances caused by wind speed and load variation than the PI controller, and thus it contributes to a better quality wind-hybrid power generation system.

Design of Nonlinear Fuzzy PI+D Controller Using Simplified Indirect Inference Method (간편 간접추론방법을 이용한 비선형 퍼지 PI+D 제어기의 설계)

  • Chai, Chang-Hyun;Lee, Sang-Tae;Ryu, Chang-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2839-2842
    • /
    • 1999
  • This paper describes the design of fuzzy PID controller using simplified indirect inference method. First, the fuzzy PID controller is derived from the conventional continuous time linear PID controller. Then the fuzzification, control-rule base, and defuzzification using SIIM in the design of the fuzzy controller are discussed in detail. The resulting controller is a discrete time fuzzy version of the conventional PID controller, which has the same linear structure. but are nonlinear functions of the input signals. The proposed controller enhances the self-tuning control capability, particularly when the process to be controlled is nonlinear. When the SIIM is applied, the fuzzy inference results can be calculated with splitting fuzzy variables into each action component and are determined as the functional form of corresponding variables. So the proposed method has the capability of the high speed inference and adapting with increasing the number of the fuzzy input variables easily. Computer simulation results have demonstrated the superior to the control performance of the one proposed by D. Misir et al.

  • PDF