• Title/Summary/Keyword: Nonlinear Load

Search Result 2,222, Processing Time 0.028 seconds

Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure

  • Arefi, M.;Rahimi, G.H.
    • Smart Structures and Systems
    • /
    • v.9 no.2
    • /
    • pp.127-143
    • /
    • 2012
  • The present paper deals with the nonlinear analysis of the functionally graded piezoelectric (FGP) annular plate with two smart layers as sensor and actuator. The normal pressure is applied on the plate. The geometric nonlinearity is considered in the strain-displacement equations based on Von-Karman assumption. The problem is symmetric due to symmetric loading, boundary conditions and material properties. The radial and transverse displacements are supposed as two dominant components of displacement. The constitutive equations are derived for two sections of the plate, individually. Total energy of the system is evaluated for elastic solid and piezoelectric sections in terms of two components of displacement and electric potential. The response of the system can be obtained using minimization of the energy of system with respect to amplitude of displacements and electric potential. The distribution of all material properties is considered as power function along the thickness direction. Displacement-load and electric potential-load curves verify the nonlinearity nature of the problem. The response of the linear analysis is investigated and compared with those results obtained using the nonlinear analysis. This comparison justifies the necessity of a nonlinear analysis. The distribution of the displacements and electric potential in terms of non homogenous index indicates that these curves converge for small value of piezoelectric thickness with respect to elastic solid thickness.

Large deformation modeling of flexible manipulators to determine allowable load

  • Esfandiar, Habib;Korayem, Moharam H.;Haghpanahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.619-629
    • /
    • 2017
  • This paper focuses on the study of complete dynamic modeling and maximum dynamic load carrying capacity computation of N-flexible links and N-flexible joints mobile manipulator undergoing large deformation. Nonlinear dynamic analysis relies on the Timoshenko theory of beams. In order to model the system completely and precisely, structural and joint flexibility, nonlinear strain-displacement relationship, payload, and non-holonomic constraints will be considered to. A finite element solution method based on mixed method is applied to model the shear deformation. This procedure is considerably more involved than displacement based element and shear deformation can be readily included without inducing the shear locking in the element. Another goal of this paper is to present a computational procedure for determination of the maximum dynamic load of geometrically nonlinear manipulators with structural and joint flexibility. An effective measure named as Moment-Height Stability (MHS) measure is applied to consider the dynamic stability of a wheeled mobile manipulator. Simulations are performed for mobile base manipulator with two flexible links and joints. The results represent that dynamic stability constraint is sensitive when calculating the maximum carrying load. Furthermore, by changing the trajectory of end effector, allowable load also changes. The effect of torsional spring parameter on the joint deformation is investigated in a parametric sensitivity study. The findings show that, by the increase of torsional stiffness, the behavior of system approaches to a system with rigid joints and allowable load of robot is also enhanced. A comparison is also made between the results obtained from small and large deformation models. Fluctuation range in obtained figures for angular displacement of links and end effector path is bigger for large deformation model. Experimental results are also provided to validate the theoretical model and these have good agreement with the simulated results.

Structural behaviour of tapered concrete-filled steel composite (TCFSC) columns subjected to eccentric loading

  • Bahrami, Alireza;Badaruzzaman, Wan Hamidon Wan;Osman, Siti Aminah
    • Computers and Concrete
    • /
    • v.9 no.6
    • /
    • pp.403-426
    • /
    • 2012
  • This paper deals with the structural behaviour of tapered concrete-filled steel composite (TCFSC) columns under eccentric loading. Finite element software LUSAS is used to perform the nonlinear analyses to predict the structural behaviour of the columns. Results from the finite element modelling and existing experimental test are compared to verify the accuracy of the modelling. It is demonstrated that they correlate reasonably well with each other; therefore, the proposed finite element modelling is absolutely accurate to predict the structural behaviour of the columns. Nonlinear analyses are carried out to investigate the behaviour of the columns where the main parameters are: (1) tapered angle (from $0^{\circ}$ to $2.75^{\circ}$); (2) steel wall thickness (from 3 mm to 4 mm); (3) load eccentricity (15 mm and 30 mm); (4) L/H ratio (from 10.67 to 17.33); (5) concrete compressive strength (from 30 MPa to 60 MPa); (6) steel yield stress (from 250 MPa to 495 MPa). Results are depicted in the form of load versus mid-height deflection plots. Effects of various tapered angles, steel wall thicknesses, and L/H ratios on the ultimate load capacity, ductility and stiffness of the columns are studied. Effects of different load eccentricities, concrete compressive strengths and steel yield stresses on the ultimate load capacity of the columns are also examined. It is concluded from the study that the parameters considerably influence the structural behaviour of the columns.

Ultimate behavior and ultimate load capacity of steel cable-stayed bridges

  • Choi, D.H.;Yoo, H.;Shin, J.I.;Park, S.I.;Nogami, K.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.4
    • /
    • pp.477-499
    • /
    • 2007
  • The main purpose of this paper is to investigate the ultimate behavior of steel cable-stayed bridges with design variables and compare the validity and applicability of computational methods for evaluating ultimate load capacity of cable-stayed bridges. The methods considered in this paper are elastic buckling analysis, inelastic buckling analysis and nonlinear elasto-plastic analysis. Elastic buckling analysis uses a numerical eigenvalue calculation without considering geometric nonlinearities of cable-stayed bridges and the inelastic material behavior of main components. Inelastic buckling analysis uses an iterative eigenvalue calculation to consider inelastic material behavior, but cannot consider geometric nonlinearities of cable-stayed bridges. The tangent modulus concept with the column strength curve prescribed in AASHTO LRFD is used to consider inelastic buckling behavior. Detailed procedures of inelastic buckling analysis are presented and corresponding computer codes were developed. In contrast, nonlinear elasto-plastic analysis uses an incremental-iterative method and can consider both geometric nonlinearities and inelastic material behavior of a cable-stayed bridge. Proprietary software ABAQUS are used and user-subroutines are newly written to update equivalent modulus of cables to consider geometric nonlinearity due to cable sags at each increment step. Ultimate load capacities with the three analyses are evaluated for numerical models of cable-stayed bridges that have center spans of 600 m, 900 m and 1200 m with different girder depths and live load cases. The results show that inelastic buckling analysis is an effective approximation method, as a simple and fast alternative, to obtain ultimate load capacity of long span cable-stayed bridges, whereas elastic buckling analysis greatly overestimates the overall stability of cable-stayed bridges.

Estimation of Pile Shaft Resistances with Elastic Modulus Depending on Strain (변형률에 따른 탄성계수 변화를 고려한 말뚝의 주면지지력 산정)

  • Kim, Seok-Jung;Kim, Sung-Heon;Jung, Sung-Jun;Kwon, Oh-Sung;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.933-943
    • /
    • 2009
  • Axial loads and shaft resistances can be calculated by load transfer analysis using strain data with load level. In load transfer analysis, the elastic modulus of concrete is a one of the most important parameters to consider. The elastic modulus, $E_{50}$, suggested by ACI (American Concrete Institute), has been commonly used. However, elastic modulus of concrete shows nonlinear stress-strain characteristic, so nonlinearity should be considered in load transfer analysis. In this paper, a load transfer analysis was performed by using data obtained from bi-directional pile load tests for four cases of drilled shafts. For consideration of nonlinearity, elastic modulus was calculated by both the Fellenius method and the nonlinear method, assuming the stress-strain relation of concrete to be a quadratic function, and then, the calculated elastic modulus was applied to the estimation of shaft resistance. The calculated shaft resistances were compared with the result obtained using the constant elastic modulus of ACI code. It was found that the f-w curves are similar to each method, and elastic modulus and shaft resistances decreased as strain increased. Moreover, shaft resistances estimated from elastic modulus considering nonlinearity were 5~15% different than those obtained using the constant elastic modulus.

  • PDF

The Proposition of Efficient Nonlinear Solution Technique for Space Truss (공간 트러스에 대한 효율적인 비선형 해석 기법 제안)

  • 석창목;권영환
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.481-490
    • /
    • 2002
  • The purpose of this paper is to evaluate the efficiency of various solution techniques and propose new efficient solution techniques for space trusses. Solution techniques used in this study are three load control methods (Newton-Raphson Method, modified Newton-Raphson Method, Secant-Newton Method), two load-displacement control methods(Arc-length Method, Work Increment Control Method) and three combined load-displacement control methods(Combined Arc-length Method I , Combined Arc-length MethodⅡ, Combined Work Increment Control Method). To evaluate the efficiency of these solution techniques, we must examine accuracy of their solutions, convergences and computing times of numerical examples. The combined load-displacement control methods are the most efficient in the geometric nonlinear solution techniques and in tracing post-buckling behavior of space truss. The combined work increment control method is the most efficient in tracing the buckling load of spate trusses with high degrees of freedom.

LS-SVM Based Modeling of Winter Time Apartment Hot Water Supply Load in District Heating System (지역난방 동절기 공동주택 온수급탕부하의 LS-SVM 기반 모델링)

  • Park, Young Chil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.9
    • /
    • pp.355-360
    • /
    • 2016
  • Continuing to the modeling of heating load, this paper, as the second part of consecutive works, presents LS-SVM (least square support vector machine) based model of winter time apartment hot water supply load in a district heating system, so as to be used in prediction of heating energy usage. Similar, but more severely, to heating load, hot water supply load varies in highly nonlinear manner. Such nonlinearity makes analytical model of it hardly exist in the literatures. LS-SVM is known as a good modeling tool for the system, especially for the nonlinear system depended by many independent factors. We collect 26,208 data of hot water supply load over a 13-week period in winter time, from 12 heat exchangers in seven different apartments. Then part of the collected data were used to construct LS-SVM based model and the rest of those were used to test the formed model accuracy. In modeling, we first constructed the model of district heating system's hot water supply load, using the unit heating area's hot water supply load of seven apartments. Such model will be used to estimate the total hot water supply load of which the district heating system needs to provide. Then the individual apartment hot water supply load model is also formed, which can be used to predict and to control the energy consumption of the individual apartment. The results obtained show that the total hot water supply load, which will be provided by the district heating system in winter time, can be predicted within 10% in MAPE (mean absolute percentage error). Also the individual apartment models can predict the individual apartment energy consumption for hot water supply load within 10% ~ 20% in MAPE.

Failure Model for the Adhesively Bonded Tubular Single Lap Joints Under Static Tensile Loads (축방향하중에 대한 튜브형 단면겹치기 접착조인트의 전적 파괴모델에 관한 연구)

  • Kim, Yeong-Gu;Lee, Su-Jeong;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1543-1551
    • /
    • 1996
  • The static tensile load bearing capability of as adhesively-bonded tubular single lap jint that is calculated usign the linear mechanical properties of adhesive is usually far from the experimentally determined because the majority of the load transfer of the adhesively-bonded jointd is accomplished by the nonlinear behavior of the rubber-toughened eoxy adhesive. In this paper, both the nonlinear mechanical properties and the fabrication residual thermal stresses of adhesive were included in the calculation of the stresses of adhesively-bonded joints. The onlinear tensile properties of adhesive were approximated by an exponential form which was represented by the initial tensile modulus and ultimate tensile stength of adhesive. The stress distribution in the adhesive were calculated by applying the load obtained from the tensile tests. From the tensile tests and the stress analysis of adhesively-bonded hoints, the failure model for adhesively-bonded tubular single lap joints was proposed.

Realization and Design of Predictor Algorithm and Evaluation of Numerical Method on Nonlinear Load Control Model (비선형 하중제어 모델의 예측기 설계 및 알고리즘 구현을 위한 수치연산 오차 분석과 평가)

  • Wang, Hyun-Min;Woo, Kwang-Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.6
    • /
    • pp.73-79
    • /
    • 2009
  • For the shake of control for movement object, control theory like neural network, nonlinear model predictive control(NMPC) is realized on digital high speed computer. Predictor of flight control system(FCS) based nonlinear model predictive control has to be satisfied with response for hard real-time to perform applications on each module in the FCS. Simultaneously, It gives a serious consideration accuracy to give full play to FCS's performance. Error of mathematical aspect affects realization of whole algorithm. But factors of bring mathematical error is not considered to calculate final accuracy on parameter of predictor. In this paper, Predictor was made using load control model on the digital computer for design FCS at hard real-time and is shown response time on realization algorithm. And is shown realization algorithm of high effective predictor over the accuracy. The predictor was realized on the load control model using Euler method, Heun method, Runge-Kutta and Taylor method.

Estimating peak wind load effects in guyed masts

  • Sparling, B.F.;Wegner, L.D.
    • Wind and Structures
    • /
    • v.10 no.4
    • /
    • pp.347-366
    • /
    • 2007
  • Guyed masts subjected to turbulent winds exhibit complex vibrations featuring many vibration modes, each of which contributes to various structural responses in differing degrees. This dynamic behaviour is further complicated by nonlinear guy cable properties. While previous studies have indicated that conventional frequency domain methods can reliably reproduce load effects within the mast, the system linearization required to perform such an analysis makes it difficult to relate these results directly to corresponding guy forces. As a result, the estimation of peak load effects arising jointly from the structural action of the mast and guys, such as leg loads produced as a result of guy reactions and mast bending moments, is uncertain. A numerical study was therefore undertaken to study peak load effects in a 295 m tall guyed mast acted on by simulated turbulent wind. Responses calculated explicitly from nonlinear time domain finite element analyses were compared with approximate methods in the frequency domain for estimating peak values of selected responses, including guy tension, mast axial loads and mast leg loads. It was found that these peak dynamic load effects could be accurately estimated from frequency domain analysis results by employing simple, slightly conservative assumptions regarding the correlation of related effects.