• Title/Summary/Keyword: Nonlinear Impact Force

Search Result 80, Processing Time 0.024 seconds

Analytical, numerical and experimental investigation of low velocity impact response of laminated composite sandwich plates using extended high order sandwich panel theory

  • Salami, Sattar Jedari;Dariushi, Soheil
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.325-334
    • /
    • 2018
  • The Nonlinear dynamic response of a sandwich plate subjected to the low velocity impact is theoretically and experimentally investigated. The Hertz law between the impactor and the plate is taken into account. Using the Extended High Order Sandwich Panel Theory (EHSAPT) and the Ritz energy method, the governing equations are derived. The skins follow the Third order shear deformation theory (TSDT) that has hitherto not reported in conventional EHSAPT. Besides, the three dimensional elasticity is used for the core. The nonlinear Von Karman relations for strains of skins and the core are adopted. Time domain solution of such equations is extracted by means of the well-known fourth-order Runge-Kutta method. The effects of core-to-skin thickness ratio, initial velocity of the impactor, the impactor mass and position of the impactor are studied in detail. It is found that these parameters play significant role in the impact force and dynamic response of the sandwich plate. Finally, some low velocity impact tests have been carried out by Drop Hammer Testing Machine. The results are compared with experimental data acquired by impact testing on sandwich plates as well as the results of finite element simulation.

Structural Analysis of PWR(pressurized water reactor) Canister for Applied Impact Force Occurring at the Moment of Falling Plumb Down Collision (추락낙하 충돌 시 가해지는 충격에 대한 경수로(PWR) 처분용기의 구조해석)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.211-222
    • /
    • 2011
  • In this paper a structural analysis of the PWR(pressurized water reactor) canister with 102cm diameter is carried out to evaluate the structural safety of the canister for the impact force occurring at the moment of collision with the ground in the falling plumb down accident from the carriage vehicle which may happen during the canister handling at the spent nuclear fuel disposal repository. For this, a rigid body dynamic analysis of the canister is executed to compute the impact force using the commercial CAE system, RecurDyn, and a nonlinear structural analysis is performed to compute stresses and deformations occurring inside the canister for this computed impact force using the commercial FEM code, NISA. From these analysis results, the structural safety of the canister is evaluated for the falling plumb down accident from the carriage vehicle due to the inattention during the canister handling at the repository. The rigid body dynamic analysis performed assuming the canister as a rigid body shows that the canister falls plumb down to the ground in two types. And also it shows that early collision impact force is the biggest one and following impact forces decrease gradually. The height of the carriage vehicle in the repository is assumed as 5m in order to obtain the stable structural safety evaluation result. The nonlinear structural analysis of the canister is executed for the biggest early impact force. The structural analysis result of the canister shows that the structural safety of the PWR canister is not secured for the falling plumb down accident from the moving carriage vehicle because the maximum stresses occurring in the cast iron insert of canister are bigger than the yield stress of the cast iron.

Modelling of reinforced concrete flat slab-column connections for system-scale seismic analyses of high-rise buildings

  • T.Y. Yang;O. AlHarras;L. Tobber;O. Sargazi
    • Computers and Concrete
    • /
    • v.31 no.1
    • /
    • pp.23-32
    • /
    • 2023
  • Reinforced concrete flat slab (RCFS) with columns is a standard gravity floor system for tall buildings in North America. Typically, RCFS-column connections are designed to resist gravity loads, and their contribution to resisting seismic forces is ignored. However, past experimental research has shown that RCFS-column connections have some strength and ductility, which may not be ignored. Advanced numerical models have been developed in the past to determine the nonlinear cyclic behavior of RCFS-column connections. However, these models are either too complicated for nonlinear dynamic analysis of an entire building or not developed to model the behavior of modern RCFS-column connections. This paper proposes a new nonlinear model suitable for modern RCFS-column connections. The numerical model is verified using experimental data of specimens with various material and reinforcement properties. A 40-story RC shear wall building was designed and analyzed to investigate the influence of RCFS on the global response of tall concrete buildings. The seismic responses of the building with and without the RCFS were modelled and compared. The results show that the modelling of RCFS has a significant impact on the inter-story drifts and force demands on both the seismic force-resisting and gravity elements.

Numerical and experimental study on the impact between a free falling wedge and water

  • Dong, Chuanrui;Sun, Shili;Song, Hexing;Wang, Qiang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.233-243
    • /
    • 2019
  • In this paper, numerical and experimental studies are performed to investigate the liquid impact on a free falling wedge. In the numerical simulation, the structure is assumed to be rigid and the elastic response is ignored. The fully nonlinear coupling between wedge and water is considered by an auxiliary function method based on the Boundary Element Method (BEM). At the intersection of the wedge surface and liquid surface, two coincident nodes are used to decouple the boundary conditions. The Eulerian free surface conditions in the local coordinate system are adopted to update the deformed free surface. In the experiments, five pressure sensors are fixed on each side of the wedge which is released from an experimental installation. Steel and aluminum wedges that have different structural elasticity are used in the experiments to investigate the influence of structural elasticity on the impact force. Numerical results are compared with experimental data and they agree very well. The influence of fluid gravity, body mass, initial entry speed and deadrise angle on the impact pressure are further investigated.

Mitigation of seismic collision between adjacent structures using roof water tanks

  • Mahmoud, Sayed
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.171-184
    • /
    • 2020
  • The potential of using the roof water tanks as a mitigation measure to minimize the required separation gap and induced pounding forces due to collisions is investigated. The investigation is carried out using nonlinear dynamic analysis for two adjacent 3-story buildings with different dynamic characteristics under two real earthquake motions. For such analysis, nonlinear viscoelastic model is used to simulate forces due to impact. The sloshing force due to water movement is modelled in terms of width of the water tank and the instantaneous wave heights at the end wall. The effect of roof water tanks on the story's responses, separation gap, and magnitude and number of induced pounding forces are investigated. The influence of structural stiffness and storey mass are investigated as well. It is found that pounding causes instantaneous acceleration pulses in the colliding buildings, but the existence of roof water tanks eliminates such acceleration pulses. At the same time the water tanks effectively reduce the number of collisions as well as the magnitude of the induced impact forces. Moreover, buildings without constructed water tanks require wider separation gap to prevent pounding as compared to those with water tanks attached to top floor under seismic excitations.

Nonlinear Analysis of Composite Laminates Subjected to Low-Velocity Impact (복합적층판의 저속충격 거동에 대한 비선형 해석)

  • Choi, Ik-Hyeon;Hong, Chang-Sun;Lee, In
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.3
    • /
    • pp.757-770
    • /
    • 1991
  • 본 연구에서는 조속충격을 받는 복합적층판의 거동에 대해 횡전단변형과 대처 짐효과를 동시에 고려하여 선형해석한 결과와의 차이를 비교, 검토하여 저속충격무제 의 해석에 있어서 비선형해석의 중요성을 보이는데 있다.그리고 충격체의 질량과 속도가 충격하중과 판의 거동, 그리고 동적 변형도등에 미치는 영향을 파악하여 복합 적층판의 외부 물체에 의한 저속충격문제를 이해 하고자 한다.

Computational impact responses of reinforced concrete slabs

  • Mokhatar, S.N.;Abdullah, R.;Kueh, A.B.H.
    • Computers and Concrete
    • /
    • v.12 no.1
    • /
    • pp.37-51
    • /
    • 2013
  • The responses of reinforced concrete slabs subject to an impact loading near the ultimate load range are explored. The analysis is carried out on a simply supported rectangular reinforced concrete slab using a nonlinear explicit dynamic procedure and considering three material models: Drucker-Prager, modified Drucker-Prager, and concrete damaged plasticity, available in the commercial finite element software, ABAQUS/Explicit. For comparison purposes, the impact force-time response, steel reinforcement failure, and concrete perforation pattern are verified against the existing experimental results. Also, the effectiveness of mesh density and damage wave propagation are studied independently. It is shown that the presently adopted finite element procedure is able to simulate and predict fairly accurate the behavior of reinforced concrete slab under impact load. More detailed investigations are however demanded for the justification of effects coming from an imperfect projectile orientation as well as the load and structural surface conditions, including the impulsive contacted state, which are inevitable in an actual impact environment.

Effect of seismic pounding on buildings isolated by triple friction pendulum bearing

  • Amiri, Gholamreza Ghodrati;Shakouri, Ayoub;Veismoradi, Sajad;Namiranian, Pejman
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.35-45
    • /
    • 2017
  • The current paper investigates the effect of the seismic pounding of neighboring buildings on the response of structures isolated by Triple Friction Pendulum Bearing (TFPB). To this end, a symmetric three-dimensional single story building is modeled for analysis with two specified levels of top deck and base deck, to capture the seismic response of the base isolators and building's roof. Linear elastic springs with different level of gaps are employed to calculate the impact between the buildings. Nonlinear Dynamic Time History Analyses (NDTHA) are conducted for seismic evaluation. Also, five different sizes with four different sets of friction coefficients are assumed for base isolators to cover a whole range of base isolation systems with various geometry configurations and fundamental period. The results are investigated in terms of base shear, buildings' drift and top deck acceleration of the superstructure. The results also indicate the profound effect of the stiffness of the adjacent buildings on the value of the impact they impose to the superstructure. Also, in situations of potential pounding, the increment of the fundamental period of the TFPB base isolator could intensify the impact force up to nearly five-fold.

Numerical and theoretical modelling of low velocity impact on UHPC panels

  • Prem, Prabhat R.;Verma, Mohit;Ramachandra Murthy, A.;Rajasankar, J.;Bharatkumar, B.H.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.207-215
    • /
    • 2017
  • The paper presents the studies carried out on low velocity impact of Ultra high performance concrete (UHPC) panels of size $350{\times}350{\times}10mm^3$ and $350{\times}350{\times}15mm^3$. The panels are cast with 2 and 2.5% micro steel fibre and compared with UHPC without fiber. The panels are subjected to low velocity impact, by a drop-weight hemispherical impactor, at three different energy levels of 10, 15 and 20 J. The impact force obtained from the experiments are compared with numerically obtained results using finite element method, theoretically by energy balance approach and empirically by nonlinear multi-genetic programming. The predictions by these models are found to be in good coherence with the experimental results.

Finite Element Analysis of Impact Characteristics of Shoes-Leg Coupled Model to landing Mode (착지모드에 따른 신발-족 연계모델의 충격특성 유한요소 해석)

  • Ryu Sung-Heon;Kim Sung-Ho;Cho Jin-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1191-1198
    • /
    • 2005
  • This paper is concerned with the numerical investigation of the landing impact characteristics of sport shoes to the landing mode. In most court sport activities, jumping and landing are fundamental motions, and the landing motion is largely composed of forefoot and rearfoot landing modes. Since the landing impact may, but frequently, lead to unexpected injuries of players, the investigation of its characteristics and the sport shoes design for reducing it are of a great importance. To investigate the landing impact characteristics to the landing mode, we construct a shoes-leg coupled model and carry out the numerical simulation by an explicit finite element method.