• Title/Summary/Keyword: Nonlinear Electrohydraulic System

Search Result 6, Processing Time 0.017 seconds

Design of a Controller for Nonlinear Electrohydraulic Position Control Systems (비선형 전기유도 시스템용제어기 특성)

  • 서원모;진강규;하주식
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.1
    • /
    • pp.63-72
    • /
    • 1992
  • A tracking controller which can improve the performance of nonlinear electrohydraulic position control system is designed and implemented. The method is based on augmenting the system with integrators, obtaining the feedback control law which stabilizes the linear part of the original nonlinear system, and then reajusting the feedback gains using the deseribing funtion method to eliminate the limit cycle in the steady state. The proposed control law is implemented using OP amplifiers, and step and ramp response tests are carried out in the electrohydraulic servomechanism. The results show the improvement in both rransient and steady-state response.

  • PDF

Design of a Controller for Nonlinear Electrohydraulic Position Control Systems (비선형 전기유압 위치제어시스템용 제어기 설계)

  • 서원모;진강규;하주식;박진길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.73-83
    • /
    • 1991
  • A tracking controller which can improve the performance of nonlinear electrohydraulic position control systems is designed and implemented. The method is based on augmenting the system with both compensated integrator and additional integrator, obtaining the feedback control law which stabilizes the linear part of the original nonlinear system, and then readjusting the feedback gains using the describing function method to eliminate the limit cycle in the steady-state. The proposed control law is implemented using OP amplifiers and electronic components, and step and ramp response tests are carried out in the electrohydraulic servomechanism EHS-160. The results show the improvement in both transient and steady-state responses.

  • PDF

The Implementation of State Observer for Position Control of Electrohydraulic Servo Systema (유압서보 시스템의 위치제어를 위한 관측제어기의 실현화 연구)

  • 이동권;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.673-677
    • /
    • 1986
  • This paper deals with the state observer-controller which observes unmeasurable state variables of the system and then uses the estimated values as feedback signals. The linearized model is deduced from the nonlinear electrohydraulic servo system. The 4th order analog linear observer-controller and the 2nd order digital one are modelled and implemented using OP amplifiers and IBM PC/XT, respectively. The two observer are experimentally used in the control of an electrohydraulic system. The results are satisfactory in estimation performance and in tracking performance to command signal.

  • PDF

Research of Synthetic Resonance Characteristics for Electrohydraulic Thrust Vector Control Actuation System (전기-유압식 추력벡터제어 구동장치시스템의 합성공진 특성 연구)

  • Min, Byeong-Joo;Choi, Hyung-Don;Kang, E-Sok
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.151-160
    • /
    • 2008
  • In this paper, the analysis results of synthetic resonance characteristics are described for the electrohydraulic thrust vector control actuation system. The synthetic resonance is induced by integration of position servo actuation system on the flexible launch vehicle mounting structure. The new resonance mode is synthesized due to composition of hydraulic resonance for electrohydraulic position servo system with inertia load condition and structural resonance for flexible mounting structure. This synthetic resonance can make stability of control system worse by feedback and amplification of control system. The exact nonlinear analysis model of this phenomenon is developed to predict and design a control algorithm for improvement characteristics. The DPF (Dynamic Pressure Feedback) control algorithm has been designed and has excellent resonance suppression capability.

  • PDF

A study on control of electrohydraulic servosystem with using model reference adaptive contorl theory (모델기준형 적응제어를 이용한 전기유압 서보계의 제어에 관한 연구)

  • Kim, K.H.;Yun, I.R.;PARK, J.B.;Kim, J.K.;Yum, M.O.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.92-99
    • /
    • 1997
  • A model reference adaptive control(MRAC) theory is very useful for controlling a plant of which the parameters are unknown or vary during operation usint only input-output signal of plant. In this study, 2' nd order discreter time MRAC controller is designed for an electrohydraulic position control system which is represented with nonlinear mathematical model and the least square method is adopted for the para-meter adjustment law. This control algorthm is applied to the position control of electrohydraulic servosystem through computer simulation and the effect of the change of load, sampling time upon the performance following reference model and upon the performance of estimating plant parameters are examined.

  • PDF

An Investigation into the PID Control for the Electro- Hydraulic Servo System of Skin Pass Mill

  • Lee, Jae-Cheon;Kim, Seong-Jin
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.47-53
    • /
    • 2001
  • This study is to investigate the problem of the SPM(Skin Pass Mil7) system which is a finishing treatment of steel sheet. and to develop a PID control scheme to minimize process instability. An electrohydraulic servo system with conventional proportional controller used to regulate the force on the strip works inadequately to yield very undesirable transient responses at the moments welding parts of the strip conte into and pass through the rolls. Both linearized and nonlinear models of a typical SPM system ware simulated first by using Simulink. Then Ziegler-Nichols ultimate cycling method was used for an initial reference guide to tune PID gains, and further fine tuning was performed to get desirable response. The test result in the plant show that proposed PID control scheme successfully improves the process instability in a SPM system.

  • PDF