연구배경 : 양성 및 음성 정신분열병 환자간의 뇌파를 비선형적으로 분석하고 그 결과를 대조군과 비교하여 뇌파의 비선형 분석을 통한 정신분열병의 병태생리를 이해하기 위하여 양성 정신분열병 환자 8명, 음성 정신분열병 환자 9명과 정상 대조군 8명을 대상으로 하여 16전극에서 뇌파를 기록하여 비선형 분석을 시행하였다. 결과 : 좌측측두부 최대 양수 리아프노프 지수 값이 음성 정신분열병군에서 양성 정신분열병군과 정상 대조군에 비하여 유의하게 낮았으며, 일부 전극에서 양성증상은 좌측 두뇌의 카오스적 성상과 정상관이 있었으며 우측두뇌의 카오스적 성상과는 역상관이 있었다. 결론 : 본 연구결과를 통하여 정신분열병 환자의 두뇌 기능을 조사하는 데에 있어서 카오스적 역동을 응용한 뇌파분석이 임상적 유용성이 있음을 알 수 있었으며, 임상적 변인을 잘 통제한 연구가 필요하다는 것을 확인할 수 있었다.
뇌 기능의 연구수단으로써 널리 사용되고 있는 뇌파(Electroencephalogram)는 측정시에 노이즈(noise)나 잡파(Artifacts)가 섞여서 측정되기 쉽다. 이러한 노이즈나 잡파들을 제거하기 위하여 미지의 혼합된 신호들을 분리하는데 적용되고 있는 통계적인 처리 방식인 독립성분분석(ICA) 알고리즘을 뇌파에 적용하여 그 결과를 알아보았다. 본 연구에서는 정상인의 안구운동(Eye Movement)상태의 뇌파 신호에 대해서 독립성분분석을 적용하여 안구운동과 관련된 잡파가 포함된 원래의 뇌파신호(Original EEG Signal)와 제거한 다음의 뇌파신호(Corrected EEG Signal)에 대하여 비선형 분석법을 사용하여 두 신호의 유의한 차이점을 밝히고, 분리된 독립 신호들의 해부학적 발생위치 및 분포를 추정하였다.
Assuming that EEG(electroencephalogram), which is generated by a nonlinear electrical of billions of neurons in the brain, has chaotic characteristics, it is confirmend by frequency spectrum analysis, log frequency spectrum analysis, correlation dimension analysis and Lyapunov exponents analysis. Some chaotic characteristics are related to the degree of brain activity. The slope of log frequency spectrum increases and the correlation dimension decreasess with respect to the activities, while the largest Lyapunov exponent has only a rough correlation.
Moon, Jinyoung;Kim, Youngrae;Lee, Hyungjik;Bae, Changseok;Yoon, Wan Chul
ETRI Journal
/
제35권6호
/
pp.1105-1114
/
2013
Owing to the large number of video programs available, a method for accessing preferred videos efficiently through personalized video summaries and clips is needed. The automatic recognition of user states when viewing a video is essential for extracting meaningful video segments. Although there have been many studies on emotion recognition using various user responses, electroencephalogram (EEG)-based research on preference recognition of videos is at its very early stages. This paper proposes classification models based on linear and nonlinear classifiers using EEG features of band power (BP) values and asymmetry scores for four preference classes. As a result, the quadratic-discriminant-analysis-based model using BP features achieves a classification accuracy of 97.39% (${\pm}0.73%$), and the models based on the other nonlinear classifiers using the BP features achieve an accuracy of over 96%, which is superior to that of previous work only for binary preference classification. The result proves that the proposed approach is sufficient for employment in personalized video segmentation with high accuracy and classification power.
Kim, Dai-Jin;Jeong, Jae-Seung;Chae, Jeong-Ho;Kim, Soo-Yong;Go, Hyo-Jin;Paik, In-Ho
감성과학
/
제1권1호
/
pp.69-78
/
1998
Sleep deprivation may affect the brain functions such as cognition and consequently, dynamics of the BEG. We examined the effects of sleep deprivation on chaoticity of the EEG. Five volunteers were sleep-deprived over a period of 24 hours They were checked by EEG during two days. thc first day of baseline period and the second day of total sleep deprivation period. EEGs were recorded from 16 channels for nonlinear analysis. We employed a method of minimum embedding dimension to calculate the first positive Lyapunov exponent. Fer limited noisy data, this algorithm was strikingly faster and more accurate than previous ones. Our results show that the sleep deprived volunteers had lower values of the first positive Lyapunov exponent at ten channels (Fp1, F4. F8. T4, T5. C3, C4. P3. P4. O1) compared with the values of baseline periods. These results suggested that sleep deprivation leads to decrease of chaotic activity in brain and impairment of the information processing in the brain. We suggested that nonlinear analysis of the EEG before and after sleep deprivation may offer fruitful perspectives for understanding the role if sleep and the effects of sleep deprivation on the brain function.
본 논문의 목적은 음주섭취로 인한 혈중 알코올 농도에 따른 뇌의 활동도변화를 측정, 분석하는데 있다. 1차원 시계열데이터인 EEG신호는 생체 비선형 동역학 시스템으로부터 발생하는 Deterministic Nonlinear Chaos신호로써 무작위적인 신호와는 구분되어질 수 있다. EEG시계열데이터를 위상공간에 적절한 어트랙터로 재구성하여 상관차원 최대발산지수 등의 카오스 지수들을 추출하여보면 EEG시계열데이터가 무작위적인 계에서 발생하는 랜덤한 신호가 아닌 카오스계에서 기인함을 알 수 있고, 인간의 정신상태에 따른 뇌의 활동도를 정성적, 정량적으로 판별해 볼 수 있다. 이러한 카오스 분석방법을 토대로 음주전의 뇌의 활동도와 음주후 혈중알코올 농도에 따른 뇌의 활동도변화를 EEG의 카오스 지수들의 변화를 통해 분석해 보았다.
Recently, causality analysis of source time series extracted from EEG or MEG signals is becoming of great importance in human brain mapping studies and noninvasive diagnosis of various brain diseases. Two approaches have been widely used for the analyses: one is independent component analysis (ICA), and the other is multiple signal classification (MUSIC). To the best of our knowledge, however, any comparison studies to reveal the difference of the two approaches have not been reported. In the present study, we compared the performance of the two different techniques, ICA and MUSIC, especially focusing on how accurately they can estimate and separate various brain electrical signals such as linear, nonlinear, and chaotic signals without a priori knowledge. Results of the realistic simulation studies, adopting directed transfer function (DTF) and Granger causality (GC) as measures of the accurate extraction of source time series, demonstrated that the MUSIC-based approach is more reliable than the ICA-based approach.
The world of linearity, which is regular, predictable and irrelevant to time sequence in most natural phenomenon, is a very small part. In fact, signals generated from natural phenomenon with which we're in contact are showed only slight linearity. Therefore it is very difficult to understand and analyze natural phenomenon with only predictable and regular linear systems. Due to these reasons researches concerning non-linear signals that of analysis were excluded being regarded as noise are being actively carried out. Countless signals generated from nonlinear system have the information about itself, and analyzing those signals and get information from it, that will be able to be used effectively in so may fields. Hence, in this paper we used a higher order spectrum, especially the bispectrum. After we prove the validity applying bispectrum to logistic map, which is typical chaotic signal. Subsequently by showing the result applying for actual signal analysis of EEG according to auditory stimuli, we show that higher order spectra is a very useful parameter in analysis of non-linear signals and the result of EEG analysis according to auditory stimuli.
Background & Objectives : Fractal Dimension(FD) could be an index of correlation between variable parameters in non-linear chaotic signals. We tried to demonstrate that EEG wave is compatible with chaotic waves by measuring the Lyapunov exponent index and compared the difference of FD between variable age groups(teens, 30's, 50's) Methods : We estimated the Lyapunov exponent index and the FD from digital EEG data among five persons in each normal age groups by using the software which is programmed in our laboratory. Statistical analysis was done with SPSS win 8.0. The statistical differences of Lyapunov exponent index and FD between each electrodes and each age groups were done with ANOVA and paired sample t-test. Result : The Lyapunov exponent indexes were larger than 1 in each electrode and age group. There is no statistical difference in FD between each electrodes and each age groups. Except in 30th age group. In this group the FD of right hemisphere is larger than that of left hemisphere. Conclusion : The result of Lyapunov exponent index means EEG wave is a non-linear chaotic signal. And the results of FD suggest that chaotic parameters of right hemisphere is larger than those of left hemisphere at rest at least in younger people. We think that chaotic parameters can be a useful tool in investigating the variable diseases or brain states.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.