• 제목/요약/키워드: Nonlinear Dynamic Inversion

검색결과 23건 처리시간 0.052초

고정익 UAV 모델링 및 비행조종컴퓨터 기반 오토파일럿 통합 시뮬레이션 HILS 환경 구축 (Modelling of Fixed Wing UAV and Flight Control Computer Based Autopilot System Development for Integrated Simulation HILS Environment)

  • 김남수;이동우;이호형;홍수운;방효충
    • 한국항공우주학회지
    • /
    • 제50권12호
    • /
    • pp.857-866
    • /
    • 2022
  • 고정익 UAV는 다른 항공기 플랫폼보다 항속거리와 항속시간에서 큰 이점을 가진다. 이러한 이유로 군에서 정찰용으로 많이 사용된다. 본 연구에서는 랜딩기어를 포함한 고정익 UAV의 모델링을 실시하고, 비행조종컴퓨터에 사용될 유도 및 제어기 설계 및 HILS 환경 구축을 실시하였다. 또한 이륙, 순항, 착륙의 모든 과정을 자동으로 수행하는 오토파일럿 시스템을 제작하였다. 연구에 사용한 고정익 UAV를 Datcom 및 AVL 공력해석 소프트웨어를 사용하여 공력계수를 추출하고 6자유도 모델링을 실시하였다. 비행조종컴퓨터는 항공기의 16개의 비행모드를 분별하여 Carrot Chasing 기반 유도 명령을 생성하는 유도기와 Nonlinear Dynamic Inversion 기법을 사용한 제어기로 구성되어있다. SIMULINK를 사용하여 구현된 모델링과 비행조종컴퓨터는 RTNgine을 사용하여 HILS 환경을 제작하여 고정익 UAV의 통합 시뮬레이션 환경을 제작하였다.

Nonlinear Adaptive Control Law for ALFLEX Using Dynamic Inversion and Disturbance Accommodation Control Observer

  • Higashi, Daisaku;Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1871-1876
    • /
    • 2005
  • In this paper, We present a new nonlinear adaptive control law using a disturbance accommodating control (DAC) observer for a Japanese automatic landing flight experiment vehicle called ALFLEX. A future spaceplane must have ability to deal with greater fluctuations in the stability and control derivatives of flight dynamics, because its flight region is much wider than that of conventional aircraft. In our previous studies, digital adaptive flight control systems have been developed based on a linear-parameter-varying (LPV) model depending on dynamic pressure, and obtained good simulation results. However, under previous control laws, it is difficult to accommodate uncertainties represented by disturbance and nonlinearity, and to design a stable flight control system. Therefore, in this study, we attempted to design a nonlinear adaptive control law using the DAC Observer and inverse dynamic methods. A good tracking property of the obtained system was confirmed in numerical simulation.

  • PDF

Aircraft CAS Design with Input Saturation Using Dynamic Model Inversion

  • Sangsoo Lim;Kim, Byoung-Soo
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권3호
    • /
    • pp.315-320
    • /
    • 2003
  • This paper presents a control augmentation system (CAS) based on the dynamic model inversion (DMI) architecture for a highly maneuverable aircraft. In the application of DMI not treating actuator dynamics, significant instabilities arise due to limitations on the aircraft inputs, such as actuator time delay based on dynamics and actuator displacement limit. Actuator input saturation usually occurs during high angles of attack maneuvering in low dynamic pressure conditions. The pseudo-control hedging (PCH) algorithm is applied to prevent or delay the instability of the CAS due to a slow actuator or occurrence of actuator saturation. The performance of the proposed CAS with PCH architecture is demonstrated through a nonlinear flight simulation.

신경회로망 보상기를 이용한 무인헬리콥터의 비선형적응제어 (Nonlinear Adaptive Control of Unmanned Helicopter Using Neural Networks Compensator)

  • 박범진;홍창호
    • 한국항공우주학회지
    • /
    • 제38권4호
    • /
    • pp.335-341
    • /
    • 2010
  • PD 제어기 기반으로 설계된 무인헬리콥터의 내부루프 제어기의 성능을 향상시키기 위 하여 한 개의 신경회로망이 적용되었다. 오차방정식의 응답특성 기반으로 설계된 PD 제어기는 운동모델의 비선형성에 의해 성능이 저하된다. 이러한 비선형성은 운동모델로부터 변형된 운동 역변환 모델(Modified Dynamic Inversion Model, MDIM)로 분리되었고 신경회로망의 출력에 의해 보상되었다. 신경회로망의 학습에는 제어기 안정성 보장을 위하여 리야프노프의 직접방법(Lyapunov's direct method)으로부터 유도된 온라인 가중치 적응법칙이 이용되었다. 신경회로망에 의한 PD제어기의 성능향상은 비선형성을 갖고 있는 무인헬리콥터의 수치시뮬레이션 결과로 보였다.

유도탄의 유도명령 추종을 위한 혼합제어기 설계 : 공력 및 추력벡터제어 (Mixed Control of Agile Missile with Aerodynamic Fin and Thrust Vectoring Control)

  • 이호철;최용석;송택렬;송찬호;최재원
    • 제어로봇시스템학회논문지
    • /
    • 제10권7호
    • /
    • pp.658-668
    • /
    • 2004
  • This paper is concerned with a control allocation strategy using the dynamic inversion and the pseudo inverse control which generates the nominal control input trajectories. In addition, an autopilot design method is proposed by using time-varying control technique which is time-varying version of the pole placement of linear time-invariant system for an agile missile with aerodynamic fin and thrust vectoring control. The control allocation proposed in this paper is capable of extracting the maximum performance by combining each control effector, aerodynamic fin and thrust vectoring control. The adopted time-varying control technique for the autopilot design enhances the robustness of the tracking performance for a reference command. The main results are validated through the nonlinear simulations with aerodynamic data.

공력 및 추력을 이용한 유도탄의 혼합제어기 설계(I) (Mixed Control of Agile Missile with Aerodynamic Fin and Thrust Vectoring Control)

  • 이호철;최용석;최재원;송택렬;송찬호
    • 한국군사과학기술학회지
    • /
    • 제6권3호
    • /
    • pp.122-130
    • /
    • 2003
  • This paper is concerned with a control allocation strategy using the dynamic inversion and the pseudo inverse control which generates the nominal control input trajectories, and autopilot design using time-varying control technique which is time-varying version of pole placement of linear time-invariant system for an agile missile with aerodynamic fin and thrust vectoring control. Control allocation of this paper is capable of extracting the maximum performance from each control effector, aerodynamic fin and thrust vectoring control, by combining the action of them. Time-varying control technique for autopilot design enhance the robustness of the tracking performance for a reference command. The main results are validated through the nonlinear simulation.

A Study on Longitudinal Phugoid Mode Affected by Application of Nonlinear Control Laws

  • Kim, Chong-Sup;Hur, Gi-Bong;Kim, Seung-Jun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권1호
    • /
    • pp.21-31
    • /
    • 2007
  • Relaxed Static Stability (RSS) concept has been applied to improve aerodynamic performance of modern version supersonic jet fighter aircraft. The T-50 advanced supersonic trainer employs the RSS concept in order to improve the aerodynamic performance. And the flight control system stabilizes the unstable aircraft and provides adequate handling qualities. The T-50 longitudinal control laws employ a proportional-plus-integral type controller based on a dynamic inversion method. The longitudinal dynamic modes consist of short period with high frequency and phugoid mode with low frequency. The design goal of longitudinal control law is optimization of short period damping ratio and frequency using Lower Order Equivalent System (LOES) complying the requirement of MIL-F-8785C. This paper addresses phugoid mode characteristics such as damping ratio and natural frequency that is affected by the nonlinear control laws such as angle of attack limiter, auto pitch attitude command system and autopilot of pitch attitude hold.

Design of Glide Slope Capture Logic Using Model Inversion

  • Park, Hyung-Sik;Ha, Cheol-Keun;Kim, Byoungsoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.50.6-50
    • /
    • 2001
  • This paper deals with a design of nonlinear glide slope capture logic using dynamic model inversion in singular perturbation, which is applicable to the autolanding in ILS. Aircraft dynamics are separated into the fast time-scale variables, related with the inner-loop design, and the slow time-scale variables, related with the outer-loop design. It is assumed that the aircraft starts landing at 1000ft of altitude, -2.5deg of flight path angle, and 250ft/sec of velocity. In the outer-loop design, commands of altitude and velocity are selected and thereby the pseudo-controls of power level and pitch rate are determined. Also the elevator input to the aircraft is determined in the inner-loop design. The final design is evaluated in 6 DOF simulation model of the associated aircraft, in which the actuator models are not included. The results show the satisfactory autolanding ...

  • PDF

특이섭동 모델역변환을 이용한 멀티콥터 위치제어 연구 (Multicopter Position Control using Singular Perturbation based Dynamic Model Inversion)

  • 최형식;정연득;이장호;유혁;이상종
    • 한국항공우주학회지
    • /
    • 제45권4호
    • /
    • pp.276-283
    • /
    • 2017
  • 본 논문은 4개의 로터를 가지는 쿼드콥터에 대한 비선형 운동모델을 구성하고, 특이섭동 기법을 이용한 모델 역변환 위치 제어기 설계 결과에 대해 나타낸다. 특이섭동 모델 역변환방식은 느린 동역학과 빠른 동역학을 시분할 기법(time scale separation)기법을 이용하여 각각 역변환 시키는 방법이다. 수립한 6자유도 비선형 운동모델 기반으로, 모델 역변환 제어기를 설계하고 시뮬레이션을 수행한 결과 정확한 위치 추종을 수행함을 확인하였다.

Evaluation of energy response of space steel frames subjected to seismic loads

  • Ozakgul, Kadir
    • Structural Engineering and Mechanics
    • /
    • 제54권4호
    • /
    • pp.809-827
    • /
    • 2015
  • In this paper, seismic energy response of inelastic steel structures under earthquake excitations is investigated. For this purpose, a numerical procedure based on nonlinear dynamic analysis is developed by considering material, geometric and connection nonlinearities. Material nonlinearity is modeled by the inversion of Ramberg-Osgood equation. Nonlinearity caused by the interaction between the axial force and bending moment is also defined considering stability functions, while the geometric nonlinearity caused by axial forces is described using geometric stiffness matrix. Cyclic behaviour of steel connections is taken into account by employing independent hardening model. Dynamic equation of motion is solved by Newmark's constant acceleration method in the time history domain. Energy response analysis of space frames is performed by using this proposed numerical method. Finally, for the first time, the distribution of the different energy types versus time at the duration of the earthquake ground motion is obtained where in addition error analysis for the numerical solutions is carried out and plotted depending on the relative error calculated as a function of energy balance versus time.