• Title/Summary/Keyword: Nonlinear Dynamic Behavior

Search Result 707, Processing Time 0.023 seconds

Dynamic Behavior of Reactor Internals under Safe Shutdown Earthquake (안전정기지진하의 원자로내부구조물 거동분석)

  • 김일곤
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.95-103
    • /
    • 1994
  • The safety related components in the nuclear power plant should be designed to withstand the seismic load. Among these components the integrity of reactor internals under earthquake load is important in stand points of safety and economics, because these are classified to Seismic Class I components. So far the modelling methods of reactor internals have been investigated by many authors. In this paper, the dynamic behaviour of reactor internals of Yong Gwang 1&2 nuclear power plants under SSE(Safe Shutdown Earthquake) load is analyzed by using of the simpled Global Beam Model. For this, as a first step, the characteristic analysis of reactor internal components are performed by using of the finite element code ANSYS. And the Global Beam Model for reactor internals which includes beam elements, nonlinear impact springs which have gaps in upper and lower positions, and hydrodynamical couplings which simulate the fluid-filled cylinders of reactor vessel and core barrel structures is established. And for the exciting external force the response spectrum which is applied to reactor support is converted to the time history input. With this excitation and the model the dynamic behaviour of reactor internals is obtained. As the results, the structural integrity of reactor internal components under seismic excitation is verified and the input for the detailed duel assembly series model could be obtained. And the simplicity and effectiveness of Global Beam Model and the economics of the explicit Runge-Kutta-Gills algorithm in impact problem of high frequency interface components are confirmed.

  • PDF

Seismic Fragility Analysis of RC Bridge Piers in Terms of Seismic Ductility (철근콘크리트 교각의 연성 능력에 따른 지진취약도)

  • Chung, Young-Soo;Park, Chang-Young;Park, Ji-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.91-102
    • /
    • 2007
  • Through lessons in recent earthquakes, the bridge engineering community recognizes the need for new seismic design methodologies based on the inelastic structural performance of RC bridge structures. This study represents results of performance-based fragility analysis of reinforced concrete (RC) bridge. Monte carlo simulation is performed to study nonlinear dynamic responses of RC bridge. Two-parameter log-normal distribution function is used to represent the fragility curves. These two-parameters, referred to as fragility parameters, are estimated by the traditional maximum likelihood procedure, which is treated each event of RC bridge pier damage as a realization of Bernoulli experiment. In order to formulate the fragility curves, five different damage states are described by two practical factors: the displacement and curvature ductility, which are mostly influencing on the seismic behavior of RC bridge piers. Five damage states are quantitatively assessed in terms of these seismic ductilities on the basis of numerous experimental results of RC bridge piers. Thereby, the performance-based fragility curves of RC bridge pier are provided in this paper. This approach can be used in constructing the fragility curves of various bridge structures and be applied to construct the seismic hazard map.

Seismic Behavior and Estimation for Base Isolator Bearings with Self-centering and Reinforcing Systems (자동복원 및 보강 시스템과 결합된 면진받침의 지진거동과 평가)

  • Hu, Jong Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1025-1037
    • /
    • 2015
  • Flexible base isolation bearings that separate superstructure from ground have been widely used in the construction field because they make a significant contribution to increasing the fundamental period of the structure, thereby decreasing response acceleration transmitted into the superstructure. However, the established bearing devices installed to uphold the whole building give rise to some problems involved with failure and collapse due to lack of the capacity as modern structures are getting more massive and higher. Therefore, this study suggests new isolation bearings assembled with additional restrainers enabled to reinforcing and recentering, and then evaluates their performance to withstand the seismic load. The superelastic shape memory alloy (SMA) bars are installed into the conventional lead-rubber bearing (LRB) devices in order to provide recentering forces. These new systems are modeled as component spring models for the purpose of conducting nonlinear dynamic analyses with near fault ground motion data. The LRB devices with steel bars are also designed and analyzed to compare their responses with those of new systems. After numerical analyses, ultimate strength, maximum displacement, permanent deformation, and recentering ratio are compared to each model with an aim to investigate which base isolation models are superior. It can be shown that LRB models with superelastic SMA bars are superior to other models compared to each other in terms of seismic resistance and recentering effect.

Numerical Experiments of Dynamic Wave Pressure Acting on the Immersed Tunnel on Seabed Foundation (해저지반 상부에 설치된 침매터널에 작용하는 동수압에 관한 수치실험)

  • Hur Dong Soo;Kim Chang Hoon;Yeom Gyeong Seon;Kim Do Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.4
    • /
    • pp.294-306
    • /
    • 2005
  • Most immersed tunnels investigated have been investigated based on the engineer's experience with design and construction. From engineering point of view, it is very important to understand the wave interaction with the seabed and immersed tunnel, since the stability of an immersed tunnel depends largely on the behavior of the seabed foundation. In this study, for the first stage research to find out the mechanism of the wave interaction with the seabed and immersed tunnel, the benchmarking method called as direct numerical simulation (DNS) was employed to analyze comprehensively the wave-induced pore water pressures, vorticity and flows in seabed or inside rubble stone around the immersed tunnel. The immersed tunnel is modeled based on Busan-Geoje fixed link project in Korea, which is now on the stage of planning. Moreover, the nonlinear water wave interaction with an immersed tunnel/its seabed foundation was thoroughly examined with regard to the stabilities of the immersed tunnel subjected to various water wave conditions, median grain size and so forth.

Enhanced Energy Harvester Based on Vibration Analysis of Bicycle Riding (자전거 주행의 진동 분석에 기반한 에너지 수확 증진 기술 개발)

  • Yeo, Jung-Jin;Ryu, Mun-Ho;Kim, Jung-Ja;Yang, Yoon-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.1
    • /
    • pp.47-56
    • /
    • 2012
  • Bicycle has a large amount of kinetic energy available for energy harvesting technology in its speedy and balanced riding movement. Systematic and realistic analysis of its dynamic property is essential to improve the efficiency of energy harvester. However, there has not been enough researches about precise measurement or analysis of bicycle dynamics on real roads. This study aims to investigate the characteristics of vibrational movement of bicycle using MEMS-based accelerometer and to develop a prototype of electromagnetic energy harvester with nonlinear behavior which is proper to the random vibrations accompanied in bicycle riding. The vibrational components have average magnitude of 1 g and turn out to be independent of riding speed. The developed prototype of energy harvester was installed on a front port of a bicycle to use this ambient vibration and generated an average electrical power of 1.5 mW which is enough to support power for most of portable sensors and short range radio-frequency communication. Further study about isolation of vibration from a rider and conversion efficiency is ongoing. The developed energy harvester is expected to be a platform technology for sustainable portable power supply for various smart IT devices and applications.

Seismic Vulnerability Assessment of RC Frame Structures Using 3D Analytical Models (3차원 해석 모델을 이용한 RC 프레임 구조물의 지진 취약도 평가)

  • Moon, Do-Soo;Lee, Young-Joo;Lee, Sangmok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.724-731
    • /
    • 2016
  • As the structural damage caused by earthquakes has been gradually increasing, estimating the seismic fragility of structures has become essential for earthquake preparation. Seismic fragility curves are widely used as a probabilistic indicator of structural safety against earthquakes, and many researchers have made efforts to develop them in a more accurate and effective manner. However, most of the previous research studies used simplified 2D analytical models when deriving fragility curves, mainly to reduce the numerical simulation time; however, in many cases 2D models are inadequate to accurately evaluate the seismic behavior of a structure and its seismic vulnerability. Thus, this study provides a way to derive more accurate, but still effective, seismic fragility curves by using 3D analytical models. In this method, the reliability analysis software, FERUM, is integrated with the structural analysis software, ZEUS-NL, enabling the automatic exchange of data between these two software packages, and the first order reliability method (FORM), which is not a sampling-based method, is utilized to calculate the structural failure probabilities. These tools make it possible to conduct structural reliability analyses effectively even with 3D models. By using the proposed method, this study conducted a seismic vulnerability assessment of RC frame structures with their 3D analytical models.

Assessment of the Structural Collapse Behavior of Between Offshore Supply Vessel and Leg in the Jack-up Drilling Rig (잭업드릴링 리그의 레그와 작업 지원선 충돌에 의한 구조붕괴 거동 평가)

  • Park, Joo-Shin;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.601-609
    • /
    • 2022
  • Jack-up drilling rigs are mobile offshore platforms widely used in the offshore oil and gas exploration industry. These are independent, three-legged, self-elevating units with a cantilevered drilling facility for drilling and production. A typical jack-up rig includes a triangular hull, a tower derrick, a cantilever, a jackcase, living quarters and legs which comprise three-chord, open-truss, X-braced structure with a spudcan. Generally, jack-up rigs can only operate in water depths ranging from 130m to 170m. Recently, there has been an increasing demand for jack-up rigs for operating at deeper water levels and harsher environmental conditions such as waves, currents and wind loads. All static and dynamic loads are supported through legs in the jack-up mode. The most important issue by society is to secure the safety of the leg structure against collision that causes large instantaneous impact energy. In this study, nonlinear FE -analysis and verification of the requirement against collision for 35MJ recommended by DNV was performed using LS-Dyna software. The colliding ship used a 7,500ton of shore supply vessel, and five scenarios of collisions were selected. From the results, all conditions do not satisfy the class requirement of 35MJ. The loading conditions associated with chord collision are reasonable collision energy of 15M and brace collisions are 6MJ. Therefore, it can be confirmed that the identical collision criteria by DNV need to be modified based on collision scenarios and colliding members.