• Title/Summary/Keyword: Nonlinear Control Law

Search Result 417, Processing Time 0.028 seconds

Fuzzy Control of Nonlinear Systems with Singularity (특이성을 가진 비선형 시스템에 대한 퍼지 제어)

  • 임기성;정정주
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2863-2866
    • /
    • 2003
  • In nonlinear control fields, for irregular nonlinear systems, control form which consists of approximate tracking control law and exact tracking control law and which switches between two laws has been proposed recently. In this thesis, we design new switching control law which connect approximate linearization control law and exact linearization control law by fuzzy rules for irregular nonlinear system, ball and beam system. Fuzzy switching controller designed by fuzzy concept is proved that designed scheme overcomes singularities of irregular system, improves unstability problem of switching procedure, and has more efficient control value through simulation. Stability of fuzzy control system proved by Lyapunov's stability theorems.

  • PDF

Observer-Based Adaptive Guidance Law Considering Target Uncertainties and Control Loop Dynamics (목표물의 불확실성과 제어루프 특성을 고려한 추정기 기반 적응 유도기법)

  • 최진영;좌동경
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.680-688
    • /
    • 2004
  • This paper proposes an observer-based method for adaptive nonlinear guidance. Previously, adaptive nonlinear guidance law is proposed considering target maneuver and control loop dynamics. However, several information of this guidance law is not available, and therefore needs to be estimated for more practical application. Accordingly, considering the unavailable information as bounded time-varying uncertainties, an integrated guidance and control model is re-formulated in normal form with respect to available states including target uncertainties and control loop dynamics. Then, a nonlinear observer is designed based on the integrated guidance and control model. Finally, using the estimates for states and uncertainties, an observer-based adaptive guidance law is proposed to guarantee the desired interception performance against maneuvering target. The proposed approach can be effectively used against target maneuver and the limited performance of control loop. The stability analyses and simulations of the proposed observer and guidance law are included to demonstrate the practical application of our scheme.

Nonlinear Backstepping Control of SynRM Drive Systems Using Reformed Recurrent Hermite Polynomial Neural Networks with Adaptive Law and Error Estimated Law

  • Ting, Jung-Chu;Chen, Der-Fa
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1380-1397
    • /
    • 2018
  • The synchronous reluctance motor (SynRM) servo-drive system has highly nonlinear uncertainties owing to a convex construction effect. It is difficult for the linear control method to achieve good performance for the SynRM drive system. The nonlinear backstepping control system using upper bound with switching function is proposed to inhibit uncertainty action for controlling the SynRM drive system. However, this method uses a large upper bound with a switching function, which results in a large chattering. In order to reduce this chattering, a nonlinear backstepping control system using an adaptive law is proposed to estimate the lumped uncertainty. Since this method uses an adaptive law, it cannot achiever satisfactory performance. Therefore, a nonlinear backstepping control system using a reformed recurrent Hermite polynomial neural network with an adaptive law and an error estimated law is proposed to estimate the lumped uncertainty and to compensate the estimated error in order to enhance the robustness of the SynRM drive system. Further, the reformed recurrent Hermite polynomial neural network with two learning rates is derived according to an increment type Lyapunov function to speed-up the parameter convergence. Finally, some experimental results and a comparative analysis are presented to verify that the proposed control system has better control performance for controlling SynRM drive systems.

Control of a 3-DOF vertical articulated robotic system using nonlinear transformation control (비선형 변환제어에 의한 3자유도 수직 다관절 로봇의 제어)

  • Yang, Chang-Il;Baek, Yun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1809-1818
    • /
    • 1997
  • Mathematical models of industrial robots or manipulators are highly nonlinear equations with nonlinear coupling between the variables of motion. As the working speed has been fast, the effects of nonlinear terms have become serious. So the control algorithm based on approximately linearized equation looses the efficiency. In order to design the control law for the nonlinear models, Hunt-Su's nonlinear transformation method and Marino's feedback equivalence condition are used with linear quadratic regulator(LQR) theory in this study. Nonlinear terms of the system are eliminated and coupled terms are decoupled by this feedback law. This method is applied to a 3-D.O.F. vertical articulated manipulator by both experiments and simulations and compared with PID control which is widely used in the industry.

Adaptive Nonlinear Guidance Considering Target Uncertainties and Control Loop Dynamics (목표물의 불확실성과 제어루프 특성을 고려한 비선형 적응 유도기법)

  • 좌동경;최진영;송찬호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.4
    • /
    • pp.320-328
    • /
    • 2003
  • This paper proposes a new nonlinear adaptive guidance law. Fourth order state equation for integrated guidance and control loop is formulated considering target uncertainties and control loop dynamics. The state equation is further changed into the normal form by nonlinear coordinate transformation. An adaptive nonlinear guidance law is proposed to compensate for the uncertainties In both target acceleration and control loop dynamics. The proposed law adopts the sliding mode control approach with adaptation fer unknown bound of uncertainties. The present approach can effectively solve the existing guidance problem of target maneuver and the limited performance of control loop. We provide the stability analyses and demonstrate the effectiveness of our scheme through simulations.

Three-dimensional Guidance Law for Formation Flight of UAV

  • Min, Byoung-Mun;Tahk, Min-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.463-467
    • /
    • 2005
  • In this paper, the guidance law applicable to formation flight of UAV in three-dimensional space is proposed. The concept of miss distance, which is commonly used in the missile guidance laws, and Lyapunov stability theorem are effectively combined to obtain the guidance commands of the wingmen. The propose guidance law is easily integrated into the existing flight control system because the guidance commands are given in terms of velocity, flight path angle and heading angle to form the prescribed formation. In this guidance law, communication is required between the leader and the wingmen to achieve autonomous formation. The wingmen are only required the current position and velocity information of the leader vehicle. The performance of the proposed guidance law is evaluated using the complete nonlinear 6-DOF aircraft system. This system is integrated with nonlinear aerodynamic and engine characteristics, actuator servo limitations for control surfaces, various stability and control augmentation system, and autopilots. From the nonlinear simulation results, the new guidance law for formation flight shows that the vehicles involved in formation flight are perfectly formed the prescribed formation satisfying the several constraints such as final velocity, flight path angle, and heading angle.

  • PDF

Control of nonlinear systems with mismatched uncertainties using an output feedback (출력피드백에 의한 비매칭 불확실성이 있는 비선형계의 제어)

  • Park, Chang-Yong;Sung, Yul-Wan;Kwon, Oh-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1188-1194
    • /
    • 1997
  • In this paper, we design output feedback nonlinear dynamic control law by using state feedback nonlinear dynamic compensator and PI observer and show that the controller can stabilize globally and asymptotically a class of nonlinear systems with mismatched uncertainties. We also show that it is possible for a nonlinear system to use the output of PI observer in place of state variables in case that the nonlinear dynamic control law is used, similarly as in the linear system. The effectiveness of the proposed control law is demonstrated by a numerical simulation.

Control of Nonlinear Systems with Mismatched Uncertainties Using an Output Feedback (출력피드백에 의한 비매칭 불확실성이 있는 비선형계의 제어)

  • Park, Chang Yong;Seong, Yeol Wan;Gwon, O Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1184-1184
    • /
    • 1997
  • In this paper, we design output feedback nonlinear dynamic control law by using state feedback nonlinear dynamic compensator and PI observer and show that the controller can stabilized globally and asymptotically a class of nonlinear systems with mismatched uncertainties. We also show that it is possible for a nonlinear system to use the output of PI observer in place of state variables in case that the nonlinear dynamic control law is used, similarly as in the linear system. The effectiveness of the proposed control law is demonstrated by a numerical simulation.

Application Study of Nonlinear Transformation Control Theory for Link Arm System (링크 암에 대한 비선형 변환 제어 이론의 응용 연구)

  • Baek, Y.S.;Yang, C.I.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.94-101
    • /
    • 1996
  • The equations of motion for a basic industrial robotic system which has a rigid or a flexible arm are derived by Lagrange's equation, respectively. Especially, for the deflection of the flexible arm, the assumed mode method is employed. These equations are highly nonlinear equations with nonlinear coupling between the variables of motion. In order to design the control law for the rigid-arm robot, Hunt-Su's nonlinear transformation method and Marino's feedback equivalence condition are used with linear quadratic regulator(LQR) theory. The control law for the rigid-arm robot is employed to input the desired path and to provide the required nonlinear transformations for the flexible-arm robot to follow. By using the implicit Euler method to solve the nonlinear equations, the comparison of the motions between the flexible and the rigid robots and the effect of flexibility are examined.

  • PDF

Robust stabilization of nonlinear uncertain systems without matching conditions (정합조건을 만족하지 않는 불확정 비선형 시스템의 강인 안정화)

  • 주진만;최윤호;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.159-162
    • /
    • 1997
  • This paper describes robust stabilization of nonlinear single-input uncertain systems without matching conditions. We consider nonlinear systems with a vector of unknown constant parameters perturbed about a known value. The approach utilizes the generalized controller canonical form to lump the unmatched uncertainties recursively into the matched ones. This can be achieved via nonlinear coordinate transformations which depend not only on the states of the nonlinear system but also on the control input. Then the dynamic robust control law is derived and the stability result is also presented.

  • PDF