• 제목/요약/키워드: Noninvasive measurement

검색결과 108건 처리시간 0.024초

위전도 측정기의 개발 및 스펙트럼 분석 (Development of EGG measurement system with running spectrum analysis)

  • 류창용;김수찬;김덕원;이상인
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1995년도 추계학술대회
    • /
    • pp.82-85
    • /
    • 1995
  • Electrogastrography(EGG) has been an attractive method for physiological and pathophysiological studies of the stomach and now is on the verge of becoming a new clinical tool in gastroenterology. In this study EGG measurement system was constructed and running spectrum analysis was developed for three-dimensional display of power spectrum with time. The noninvasive technique of EGG is an excellent alternative since the established invasive methods for the study of the stomachs of children and infants.

  • PDF

유한요소법을 이용한 2차원 Field 내의 온도분포의 이론적 해석 (THEORITICALL ANALYSIS OF TEMPERATURE DISTRIBUTION IN TWO-DIMENSIONAL FIELD USING F.E.M)

  • 김낙환;최창순;최홍호;홍승홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 전기.전자공학 학술대회 논문집(II)
    • /
    • pp.1292-1295
    • /
    • 1987
  • In noninvasive temperature measurement within body, this paper is presented temperature measurement method in security and with effect from Applicator by electromagnetic, and it is analyzed heat generation quantity or temperature rise distribution by computer simulation within body. In this paper, two-dimensional model is considered and temperature distribution produced by RF capacitive heating system is analyzed by using Finit Element Method (F.E.M). A passibility of temperature distribution control is examined based on the position and size of Applicator.

  • PDF

Magnetoencephalography (MEG)의 임상적 유용성 (Magnetoencephalography and Clinical Application)

  • 박현미;신동진
    • Annals of Clinical Neurophysiology
    • /
    • 제1권2호
    • /
    • pp.154-159
    • /
    • 1999
  • Magnetoencephalography (MEG), the measurement of magnetic fields produced by neuronal current associated with normal and pathologic brain activities, is a totally noninvasive method for localizing functional regions of the brain. During the past several years, many clinical research centers are working to expand various fundamental functional brain regions, which can be easily localized, as well as to characterize magnetic abnormalities which accompany a wide variety of cerebral disease. At present, MEG is used in a number of clinical centers throughout the world for the presurgical functional localization of eloquent cortex, and for the non-invasive localization of epileptiform activity. And also, non-invasiveness means that it can be used for screening and repetitive follow-up measurement without concern for adverse effects. As procedures for activating various functional brain regions are standardized, and as the effects of specific cerebral diseases on the MEG are carefully documented in controlled studies, the number of routine neurological applications for MEG will increase significantly. In this paper, the basic principles of MEG are reviewed briefly with its clinical application to neurologic disease.

  • PDF

생체고분자의 팽윤현상연구를 위한 핵자기공명 현미영상법의 응용 (Application of NMR Microscopy for the Study of the Swelling Effect in Biopolymers)

  • 이동훈;김승수
    • 대한의용생체공학회:의공학회지
    • /
    • 제18권2호
    • /
    • pp.167-172
    • /
    • 1997
  • Novel measurement method has been performed for the noninvasive study of the swelling effect detected in hydrophilic polymers using Magnetic Resonance Microscopy. iN NMR images were acquired to measure geometric changes due to the swelling effect occurred in the polymer specimens. In addition to the geometric changes, the water ingress process was visualized noninvgsively. The measurement method performed .in the present study utilized some of NMR's valuable properties, both noninvasiveness and parameter selectivity. It is believed that the method used in the present study may be applicable to the study of biopolymers in which noninvasiveness is particularly important.

  • PDF

Microwave and RF Heating for Medical Application under Noninvasive Temperature Measurement Using Magnetic Resonance

  • Nikawa, Yoshio;Ishikawa, Akira
    • Journal of electromagnetic engineering and science
    • /
    • 제10권4호
    • /
    • pp.244-249
    • /
    • 2010
  • Recent development of magnetic resonance imaging (MRI) equipment enables interventional radiology (IVR) as diagnosis and treatment under MRI usage. In this paper, a new methodology for magnetic resonance (MR) scanner to apply not only diagnostic equipment but for treatment one is discussed. The temperature measuring procedure under MR is to measure phase shift of $T_1$, which is the longitudinal relaxation time of proton, for the position inside a sample material with the application of pulsed RF for heating inside the sample as artificial dielectrics. The result shows the possibility to apply MR as temperature measuring equipment and as a heating equipment for applying such as hyperthermia heating modality.

Implementation of Extended Kalman Filter for Real-Time Noncontact ECG Signal Acquisition in Android-Based Mobile Monitoring System

  • Rachim, Vega Pradana;Kang, Sung-Chul;Chung, Wan-Young;Kwon, Tae-Ha
    • 센서학회지
    • /
    • 제23권1호
    • /
    • pp.7-14
    • /
    • 2014
  • Noncontact electrocardiogram (ECG) measurement using capacitive-coupled technique is a very reliable long-term noninvasive health-care remote monitoring system. It can be used continuously without interrupting the daily activities of the user and is one of the most promising developments in health-care technology. However, ECG signal is a very small electric signal. A robust system is needed to separate the clean ECG signal from noise in the measurement environment. Noise may come from many sources around the system, for example, bad contact between the sensor and body, common-mode electrical noise, movement artifacts, and triboelectric effect. Thus, in this paper, the extended Kalman filter (EKF) is applied to denoise a real-time ECG signal in capacitive-coupled sensors. The ECG signal becomes highly stable and noise-free by combining the common analog signal processing and the digital EKF in the processing step. Furthermore, to achieve ubiquitous monitoring, android-based application is developed to process the heart rate in a realtime ECG measurement.

MCG 영상진단 검사에 관한 연구 (A Study on MCG Imaging)

  • 김종규
    • 대한임상검사과학회지
    • /
    • 제38권2호
    • /
    • pp.135-140
    • /
    • 2006
  • Magnetocardiography (MCG) is the measurement and analysis of the magnetic component of the electro-magnetic field of the human heart, usually conducted externally, using extremely sensitive devices such as a Superconducting Quantum Interference Device (SQUID). MCG is a totally noninvasive method, it uses neither radiation nor ultrasonics. The magnetic activity of the heart is registered from outside the thorax. MCG has a very high sensitivity and a high spatial resolution for very a small, local myocardial current. In comparison to the electrical signals measured by an ECG, the magnetic signal does not disturb the boundaries of tissues with different electrical properties. MCG measures the myocardial function rather than describing the morphology. MCG is a relatively new technique that promises good spatial resolution and extremely high temporal resolution, thus complementing other heart activity measurement techniques such as Electrocardiography (ECG). The clinical uses of MCG are in detecting various cardiac disorders including myocardial infarction, ventricular hypertrophy, ventricular conduction defects, Wolff-Parkinson-White (WPW) syndrome, sudden cardiac death and fetal magnetocardiography. Magnetocardiography may be used alone or together with electrcardiography for the measurement of spontaneous or overloaded activity and for research or clinical purposes.

  • PDF

선천성 대동맥 협착증의 술전 및 술후 단기간의 수축말기 좌심실 내벽 스트레스의 변화 (Alterations in Left ventricular End-systolic Wall Stress During Short-term Follow-up After Correction of Isolated Congenital Aortic Stenosis)

  • 김시호
    • Journal of Chest Surgery
    • /
    • 제33권10호
    • /
    • pp.777-784
    • /
    • 2000
  • Congenital aortic stenosis in children is characterized by "excessive" left ventricular hypertrophy with reduced left ventricular systolic wall stress that allows for supernormal ejection performance. We hypothesized that left ventricular wall stress was decreased immediately after surgical correction of pure congenital aortic stenosis. Also measuring postoperative left ventricular wall stress was a useful noninvasive measurement that allowed direct assessment for oxygen consumption of myocardium than measuring the peak systolic pressure gradient between ascending aorta and left ventricle for the assessment of surgical results. Material and Method: Between September 1993 and August 1999, 8 patients with isolated congenital aortic stenosis who underwent surgical correction at Yonsei cardiovascular center were evaluated. There were 6 male and 2 female patients ranging in age from 2 to 11 years(mean age, 10 years). Combined Hemodynamic-Ultrasonic method was used for studying left ventricular wall stress. We compared the wall stress peak systolic pressure gradient and ejection fraction preoperatively and postoperatively. Result: After surgical correction peak aortic gradient fell from 58.4${\pm}$17.6, to 23.7${\pm}$17.7 mmHg(p=0.018) and left ventricular ejection fraction decreased but it is not statistically significant. In the consideration of some factors that influence left ventricular end-systolic wall stress excluding one patient who underwent reoperation for restenosis of left ventricular outflow tract left ventricular end-systolic pressure and left ventricular end-systolic dimension were fell from 170.6${\pm}$24.3 to 143.7${\pm}$27.1 mmHg and from 1.78${\pm}$0.4 to 1.76${\pm}$0.4 cm respectively and left ventricular posterior wall thickness was increased from 1.10${\pm}$0.2, to 1.27${\pm}$0.3cm but it was not statistically singificant whereas left ventricular end-systolic wall stress fell from 79.2${\pm}$24.9 to 57.1${\pm}$27.6 kdynes/cm2(p=0.018) in 7 patients. For one patient who underwent reoperation peak aortic gradient fell from 83.0 to 59.7 mmHg whereas left ventricular end-systolic wall stress increased from 67.2 to 97.0 kdynes/cm2 The intervals did not change significnatly. Conclusion ; We believe that probably some factors that are related to left ventricular geometry influenced the decreased left ventricular wall stress immediately after surgical correction of isolated congenital aortic stenosis. Left ventricular wall stress is a noninvasive measurement and can allow for more direct assesment than measuring peak aortic gradient particularly in consideration of the stress and oxygen consumption of the myocardium therefore we can conclude it is a useful measurement for postoperative assessment of congenital aortic stenosis.

  • PDF

휴대용 뇨당 측정 시스템의 개발 (Development of an Portable Urine Glucose Monitoring System)

  • 박호동;이경중;윤형로
    • 대한의용생체공학회:의공학회지
    • /
    • 제23권5호
    • /
    • pp.397-403
    • /
    • 2002
  • 뇨당 측정 시스템은 소변 속의 글루코오스 농도를 측정함으로서 당뇨 수치를 모니터링하는 비침습적인 당뇨병 자가 진단 장치이다. 본 논문에서는 기존의 침습형 혈당측정방법의 불편성과 비색계를 이용한 뇨당 검사법의 단점을 보완한 뇨당 측정시스템을 설계하였다. 뇨당 측정시스템은 뇨당 측정용 화학센서, 신호검출부, 디지털 제어 및 신호분석부, 디스플레이부 및 전원부로 구성된다. 뇨당측정용 센서로는 재현성이 뛰어나고 다루기가 간편하며 저렴한 가격으로 대량 생산할 수, 있는 일회용 뇨당측정용 전류화학센서를 개발하였다. 설계한 뇨당 측정시스템의 성능을 평가하기 위하여 사람의 소변에 임의의 농도의 글루코오스 성분을 섞은 용액에 대하여 글루코오스 성분 분석시 사용되는 표준장비와의 비교분석을 통해서 글루코오스 농도 검출에 대한 신뢰성 평가를 수행하였다. 회귀분석에 기초한 신뢰성 평가를 수행한 결과 표준오차는 2.85282로 나타났다. 또한, 화학센서를 사용해서 측정하는 시스템을 평가 시 중요한 파라미터인 S.D(Standard Deviation)는 10%로서 임상적으로 유효한 15% 범주 내에 있음을 확인하였고, C.V(Coefficient of Validation)값은 ,5%이내이므로 혈당센서의 기준으로 평가해 볼때 만족하는 결과를 보였다.

Haematococcus pluvialis Cell-Mass Sensing Using Ultraviolet Fluorescence Spectroscopy

  • Lababpour, Abdolmajid;Hong, Seong-Joo;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권12호
    • /
    • pp.1922-1929
    • /
    • 2007
  • A simple whole-cell-based sensing system is proposed for determining the cell mass of H. pluvialis using ultraviolet fluorescence spectroscopy. An emission signal at 368 nm was used to detect the various kinds of green, green-brown, brown-red, and red H. pluvialis cells. The fluorescence emission intensities of the cells were highest at 368 nm with an excitation wavelength of 227 nm. An excitation wavelength of 227 nm was then selected for cell-mass sensing, as the emission fluorescence intensities of the cell suspensions were highest at this wavelength after subtracting the background interference. The emission fluorescence intensities of HPLC-grade water, filtered water, and HPLC-grade water containing a modified Bold's basal medium (MBBM) were measured and the difference was less than 1.6 for the selected wavelengths. Moreover, there was no difference in the emission intensity at 368 nm among suspensions of the various morphological states of the cells. A calibration curve of the fluorescence emission intensities. and cell mass was obtained with a high correlation ($R^2=0.9938$) for the various morphological forms of H. pluvialis. Accordingly, the proposed method showed no significant dependency on the various morphological cell forms, making it applicable for cell-mass measurement. A high correlation was found between the fluorescence emission intensities and the dry cell weight with a mixture of green, green-brown, brown-red, and red cells. In conclusion, the proposed model can be directly used for cell-mass sensing without any pretreatment and has potential use as a noninvasive method for the online determination of algal biomass.