• Title/Summary/Keyword: Noninformative improper prior

Search Result 35, Processing Time 0.015 seconds

A Multiple Test of a Poisson Mean Parameter Using Default Bayes Factors (디폴트 베이즈인자를 이용한 포아송 평균모수에 대한 다중검정)

  • 김경숙;손영숙
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.2
    • /
    • pp.118-129
    • /
    • 2002
  • A multiple test of a mean parameter, λ, in the Poisson model is considered using the Bayes factor. Under noninformative improper priors, the intrinsic Bayes factor(IBF) of Berger and Pericchi(1996) and the fractional Bayes factor(FBF) of O'Hagan(1995) called as the default or automatic Bayes factors are used to select one among three models, M$_1$: λ< $λ_0, M$_2$: λ= $λ_0, M$_3$: λ> $λ_0. Posterior probability of each competitive model is computed using the default Bayes factors. Finally, theoretical results are applied to simulated data and real data.

A Bayesian Test for Simple Tree Ordered Alternative using Intrinsic Priors

  • Kim, Seong W.
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.1
    • /
    • pp.73-92
    • /
    • 1999
  • In Bayesian model selection or testing problems, one cannot utilize standard or default noninformative priors, since these priors are typically improper and are defined only up to arbitrary constants. The resulting Bayes factors are not well defined. A recently proposed model selection criterion, the intrinsic Bayes factor overcomes such problems by using a part of the sample as a training sample to get a proper posterior and then use the posterior as the prior for the remaining observations to compute the Bayes factor. Surprisingly, such Bayes factor can also be computed directly from the full sample by some proper priors, namely intrinsic priors. The present paper explains how to derive intrinsic priors for simple tree ordered exponential means. Some numerical results are also provided to support theoretical results and compare with classical methods.

  • PDF

Bayesian Hypothesis Testing for Homogeneity of the Shape Parameters in the Gamma Populations

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.4
    • /
    • pp.1191-1203
    • /
    • 2007
  • In this paper, we consider the hypothesis testing for the homogeneity of the shape parameters in the gamma distributions. The noninformative priors such as Jeffreys# prior or reference prior are usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. So we propose the objective Bayesian testing procedure for the homogeneity of the shape parameters based on the fractional Bayes factor and the intrinsic Bayes factor under the reference prior. Simulation study and a real data example are provided.

  • PDF

Objective Bayesian testing for the location parameters in the half-normal distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.6
    • /
    • pp.1265-1273
    • /
    • 2011
  • This article deals with the problem of testing the equality of the location parameters in the half-normal distributions. We propose Bayesian hypothesis testing procedures for the equality of the location parameters under the noninformative prior. The non-informative prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to arbitrary constants. This problem can be deal with the use of the fractional Bayes factor or intrinsic Bayes factor. So we propose the default Bayesian hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and an example are provided.

A Bayesian Outlier Detection in Random Effects Model (변량모형 자료에서의 베이지안 이상점검출)

  • 정윤식;이상진
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.1
    • /
    • pp.115-131
    • /
    • 2000
  • 이 논문에서는 평균-이동모형(mean-shift model)을 이상점을 위한 대립모형으로 사용하여 변량모형(random effect model)에서의 이상점 검출을 위한 베이즈인자(Bayes factor)를 제시한다. 그러나 가능한 사전 정보가 없어서 무정보사전분포(noninformative prior distribution)가 사용되어야만 할 때, 대부분의 무정보사전분포는 부적절분포(improper distribution)이기 때문에 베이즌 인자에는 사전분포로부터 나온 미지의 상수가 포함되어 잇다. 이 문제를 해결하기 위해 이 논문에서는 Berger와 Pericchi (1996)가 제시한 내재베이즈인자(the intrinsic Bayes factor;IBF)를 사용한다. 또한 이 베이즈인자를 계산상 어려움을 해결하기 위해 Verdinellidh Wasserman(1995)의 일반화 세비디지키 밀도비를 이용하여 수정하고 이것을 이용하여 이상점을 검출하는 방법을 제시한다. 마지막으로 인위적으로 이상점을 포함하고 있는 데이터를 만들고 제시된 방법으로 가상실험을 하고 또한 실제 데이터에서 제시한 방법으로 이상점을 찾아보았다.

  • PDF