• 제목/요약/키워드: Nonequilibrium Energy Transfer

검색결과 11건 처리시간 0.021초

Rovibrational Nonequilibrium of Nitrogen Behind a Strong Normal Shock Wave

  • Kim, Jae Gang
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.28-37
    • /
    • 2017
  • Recent modeling of thermal nonequilibrium processes in simple molecules like hydrogen and nitrogen has indicated that rotational nonequilibrium becomes as important as vibrational nonequilibrium at high temperatures. In the present work, in order to analyze rovibrational nonequilibrium, the rotational mode is separated from the translational-rotational mode that is usually considered as an equilibrium mode in two- and multi-temperature models. Then, the translational, rotational, and electron-electronic-vibrational modes are considered separately in describing the thermochemical nonequilibrium of nitrogen behind a strong normal shock wave. The energy transfer for each energy mode is described by recently evaluated relaxation time parameters including the rotational-to-vibrational energy transfer. One-dimensional post-normal shock flow equations are constructed with these thermochemical models, and post-normal shock flow calculations are performed for the conditions of existing shock-tube experiments. In comparisons with the experimental measurements, it is shown that the present thermochemical model is able to describe the rotational and electron-electronic-vibrational relaxation processes of nitrogen behind a strong shock wave.

펨토초 레이저가 조사되는 동안의 금속 박막내의 비평형 에너지 전달 현상에 대한 수치해석 연구 (Numerical Investigation on Nonequilibrium Energy Transfer in Thin Metal Film Structures during the Irradiation of Femtosecond Pulse Laser)

  • 심형섭;이성혁
    • 전기학회논문지
    • /
    • 제56권2호
    • /
    • pp.367-373
    • /
    • 2007
  • The present study investigates numerically nonequilibrium energy transfer between electrons and phonons in metal thin films irradiated by ultrashort pulse lasers and it also provides the temporal and spatial variations of electron and phonon temperatures using the well-established two-temperature model(TTM) on the basis of the Boltzmann transport equation(BTE). This article predicts the crater shapes in gold film structures, and compares the results by using two-dimensional energy transport equation. From the results, it is found that nonequilibrium energy transfer between electrons and phonons takes place, and the equilibrium time increases with the increase of laser fluence. On the other hand, above threshold fluence the ablation time doesn't change nearly with increasing fluences. Compared with one-dimensional TTM, it also reveals that the temporal distributions of electron and phonon temperatures at the top surface estimated by using two-dimensional TTM have a similar tendency. The results show that two-dimensional TTM can simulate the crater shape of metals during the irradiation of femtosecond pulse lasers and the absorbed energy is propagated to z-direction faster than to r-direction.

Nonequilibrium Heat Transfer Characteristics During Ultrafast Pulse Laser Heating of a Silicon Microstructure

  • Lee Seong Hyuk
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1378-1389
    • /
    • 2005
  • This work provides the fundamental knowledge of energy transport characteristics during very short-pulse laser heating of semiconductors from a microscopic viewpoint. Based on the self-consistent hydrodynamic equations, in-situ interactions between carriers, optical phonons, and acoustic phonons are simulated to figure out energy transport mechanism during ultrafast pulse laser heating of a silicon substrate through the detailed information on the time and spatial evolutions of each temperature for carriers, longitudinal optical (LO) phonons, acoustic phonons. It is found that nonequilibrium between LO phonons and acoustic phonons should be considered for ultrafast pulse laser heating problem, two-peak structures become apparently present for the subpicosecond pulses because of the Auger heating. A substantial increase in carrier temperature is observed for lasers with a few picosecond pulse duration, whereas the temperature rise of acoustic and phonon temperatures is relatively small with decreasing laser pulse widths. A slight lagging behavior is observed due to the differences in relaxation times and heat capacities between two different phonons. Moreover, the laser fluence has a significant effect on the decaying rate of the Auger recombination.

무딘 물체의 노즈 반지름이 비평형 유동의 공력 가열에 미치는 영향 (Effects of Nose Radius of Blunt Body on Aerodynamic Heating in Thermochemical Nonequilibrium Flow)

  • 이창호;박승오
    • 한국전산유체공학회지
    • /
    • 제8권4호
    • /
    • pp.34-40
    • /
    • 2003
  • The effect of nose radius on aerodynamic heating is investigated by using the Navier-Stokes code extended to thermochemical nonequilibrium airflow, Spherical blunt bodies, whose nose radius varies from 0.O03048 m to 0.6096 m, flying at Mach 25 at an altitude of 53.34 km are considered. Comparison of heat flux at stagnation point with the solution of Viscous Shock Layer and Fay-Riddell are made. Results show that the flow for very small radius is in a nearly frozen state, and therefore the heat flux due to diffusion is smaller than that due to translational energy. As the radius becomes larger, the portion of heat flux by diffusion becomes greater than that of heat flux by translational temperature and approaches to a constant value.

Multiphase Flow Modeling of Molten Material-Vapor-Liquid Mixtures in Thermal Nonequilibrium

  • Park, Ik-Kyu;Park, Goon-Cherl;Bang, Kwang-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제14권5호
    • /
    • pp.553-561
    • /
    • 2000
  • This paper presents a numerical model of multi phase flow of the mixtures of molten material-liquid-vapor, particularly in thermal nonequilibrium. It is a two-dimensional, transient, three-fluid model in Eulerian coordinates. The equations are solved numerically using the finite difference method that implicitly couples the rates of phase changes, momentum, and energy exchange to determine the pressure, density, and velocity fields. To examine the model's ability to predict an experimental data, calculations have been performed for tests of pouring hot particles and molten material into a water pool. The predictions show good agreement with the experimental data. It appears, however, that the interfacial heat transfer and breakup of molten material need improved models that can be applied to such high temperature, high pressure, multi phase flow conditions.

  • PDF

Three-Temperature Modeling of Carrier-Phonon Interactions in Thin GaAs Film Structures Irradiated by Picosecond Pulse Lasers

  • Lee Seong-Hyuk;Lee Jung-Hee;Kang Kwan-Gu;Lee Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제20권8호
    • /
    • pp.1292-1301
    • /
    • 2006
  • This article investigates numerically the carrier-phonon interactions in thin gallium arsenide (GaAs) film structures irradiated by subpicosecond laser pulses to figure out the role of several recombination processes on the energy transport during laser pulses and to examine the effects of laser fluences and pulses on non-equilibrium energy transfer characteristics in thin film structures. The self-consistent hydrodynamic equations derived from the Boltzmann transport equations are established for carriers and two different types of phonons, i.e., acoustic phonons and longitudinal optical (LO) phonons. From the results, it is found that the two-peak structure of carrier temperatures depends mainly on the pulse durations, laser fluences, and nonradiative recombination processes, two different phonons are in nonequilibrium state within such lagging times, and this lagging effect can be neglected for longer pulses. Finally, at the initial stage of laser irradiation, SRH recombination rates increases sufficiently because the abrupt increase in carrier number density no longer permits Auger recombination to be activated. For thin GaAs film structures, it is thus seen that Auger recombination is negligible even at high temperature during laser irradiation.

비선형 $k-{\epsilon}$ 난류모델에 의한 원추형 디퓨저 유동해석 (Numerical Simulation of a Conical Diffuser Using the Nonlinear $k-{\epsilon}$ Turbulence Model)

  • 이연원
    • 동력기계공학회지
    • /
    • 제2권1호
    • /
    • pp.31-38
    • /
    • 1998
  • A diffuser, an important equipment to change kinetic energy into pressure energy, has been studied for a long time. Though experimental and theoretical researches have been done, the understanding of energy transfer and detailed mechanism of energy dissipation is unclear. As far as numerical prediction of diffuser flows are concerned, various numerical studies have also been done. On the contrary, many turbulence models have constraint to the applicability of diffuser-like complex flows, because of anisotropy of turbulence near the wall and of local nonequilibrium induced by an adverse pressure gradient. The existing $k-{\epsilon}$ turbulence models have some problems in the case of being applied to complex turbulent flows. The purpose of this paper is to test the applicability of the nonlinear $k-{\epsilon}$ model concerning diffuser-like flows with expansion and streamline curvature. The results show that the nonlinear $k-{\epsilon}$ turbulence model predicted well the coefficient of pressure, velocity profiles and turbulent kinetic energy distributions, however the shear stress prediction was failed.

  • PDF

충격파 풍동의 극초음속 노즐 설계를 위한 Quasi 1D 비평형 해석 및 검증 (Quasi 1D Nonequilibrium Analysis and Validation for Hypersonic Nozzle Design of Shock Tunnel)

  • 김세환;이형진
    • 한국항공우주학회지
    • /
    • 제46권8호
    • /
    • pp.652-661
    • /
    • 2018
  • 고속 고온 유동에서 나타나는 고온 기체 현상을 모사하기 위해서는 마하수뿐 아니라 절대속도도 재현할 수 있어야 한다. 이러한 유동을 초음속 유동과 구분하여 극고속 유동이라 부르며, 충격파 터널과 같은 고엔탈피 시험 장치를 통해 연구가 이루어지고 있다. 그러나 이러한 고엔탈피 시험 장비는 높은 온도와 압력 때문에 노즐에서 열화학적 비평형 현상을 경험하게 되며 기존의 이론적 방법으로 그 실험 조건을 규정하기 어렵다. 이에 본 연구에서는 알려진 비평형 노즐 코드의 단점들을 보완하고 충격파 터널의 운용 조건에서 시험부 유동 특성을 빠르게 예측하기 위하여 열화학적 비평형을 고려한 준 1차원 노즐 해석 코드를 개발하였다. 개발된 코드는 시험 결과 및 2차원 축대칭 해석 결과와 비교를 통하여 충격파 풍동 시험부 유동 조건 예측을 위한 활용성 및 한계를 살펴보았다.

미국 네브라스카의 관개된 옥수수 농업생태계의 복사, 에너지 및 엔트로피의 교환 (Radiation, Energy, and Entropy Exchange in an Irrigated-Maize Agroecosystem in Nebraska, USA)

  • 양현영;요하나 마리아 인드라와티;앤드류 수커;이지혜;이경도;김준
    • 한국농림기상학회지
    • /
    • 제22권1호
    • /
    • pp.26-46
    • /
    • 2020
  • 이 연구의 목표는 관개된 옥수수 밭에서의 복사, 에너지 및 엔트로피의 교환을 평가하고 문서화하는 것이다. 열역학적 관점에서, 우리는 이 농업생태계를 태양 복사로 인해 시스템 내부와 외부 사이에 큰 경도(gradient)가 부여되는 열린 열역학적 시스템으로 간주하였다. 따라서 시스템이 평형에서 멀어질 때, 열역학적 원칙에 따라 비평형 소산 과정(nonequilibrium dissipative process)인 이 생태-사회시스템이 모든 생물, 물리, 화학 및 인위적 구성 요소를 사용하여 태양으로부터 주어진 경도에 저항하여 이를 감소시키도록 움직인다고 가정하였다. 이 가설을 검증하기 위한 첫 단계로서 미국 네브라스카의 옥수수 밭에 위치한 AmeriFlux의 NE1 사이트에서 2003년부터 2014년까지 관측된 플럭스 및 미기상 자료를 사용하여 복사, 에너지 및 엔트로피의 교환을 정량화하였다. 12년 평균한 생장기간의 결과에 따르면, 시스템의 에너지 포획(순복사와 하향단파복사의 비, Rn/Rs↓)은 옥수수의 생장과 함께 증가하였고, 생장기간이 비생장기간보다 약 80% 높았다. 생장기간 동안 시스템 내의 엔트로피 생성(σ)은 평균 9.56 MJ m-2 K-1이었고, 주로 하향단파 복사에 의해 결정되었다. 엔트로피 수송(J)은 잠열플럭스, 순장파복사, 현열플럭스의 순으로 기여하였고, 시스템 외부 환경으로 퍼낸 양은 σ의 ~84%에 해당하는 -7.99 MJ m-2 K-1이었다. 따라서 매년 생장 기간동안 시스템 내에 순 축적된 엔트로피(dS/dt)는 1.57 MJ m-2 K-1이었다. 탄소 흡수 효율(CUE)은 1.25~1.62, 물 사용 효율(WUE)은 1.98~2.92 g C (kg H2O)-1이었고 모두 옥수수의 성장과 함께 증가하였다. 극심한 가뭄으로 관개가 더 빈번하게 행해진 2012년의 경우, σ와 J가 모두 평년보다 10% 많은 최대값을 보였고, 그 결과 서로 대부분 상쇄되어 dS/dt는 평년보다 조금 높은 수준에 머물렀다. 가뭄 중에도 빈번한 관개로 인해 엔트로피 수송의 주된 경로가 현열플럭스에서 잠열플럭스로 바뀌면서 생산량과 CUE는 평년 값을 웃돌았으나 물과 빛의 사용 효율은 오히려 낮아졌다. 이러한 결과에 근거하여 관개된 옥수수 생태-사회시스템의 지속가능성의 변화를 평가하기에는 아직 여러가지 문제가 남아있다. 자기-조직화 과정은 시스템과 주변 간의 경도를 효과적으로 감소시키는 역할을 한다. 따라서 엔트로피 자료와 함께, 지속가능성의 척도가 되는 자기-조직화 역량을 나타내는 스펙트랄 엔트로피, 또는 하부시스템의 구조 및 에너지·물질의 흐름의 강도와 방향의 변화를 가늠할 수 있는 역학적 과정망(dynamic process network) 분석 등의 추가 연구가 병행되어야 한다.