• Title/Summary/Keyword: Nondestructive system

Search Result 598, Processing Time 0.026 seconds

Development of a Wireless Acoustic Emission System for the Monitoring of Rotating Structures (회전기 진단을 위한 무선식 AE 측정장치 개발)

  • Kwon, O.Y.;Kim, Y.H.;Yoon, D.J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.11 no.2
    • /
    • pp.15-21
    • /
    • 1991
  • A wireless acoustic emission (AE) system has been developed for continuous monitoring of rotating structures such as turbine rotors. The cable between preamplifier and signal processing unit of a conventional AE system was replaced by the frequency modulated telemetry. The detected signals were modulated and transmitted as an RF signals by the transmitting module, then received and demodulated by the receiving module. The distance between the transmitting and the receiving antennas could be separated up to 10cm within a reasonable signal-to-noise ratio. The simulated AE signals generated by pencil lead breaks from rotating structures were successfully detected using the developed wireless AE monitoring system.

  • PDF

An Experimental Study of Nondestructive Testing System to measure Dimension of Cylindrical Rod using Solenoid Eddy Current Coil

  • Kim, Sung-Duck
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.203-210
    • /
    • 1998
  • An experimental study of an eddy current nondestructive testing system to measure dimensions of cylindrical metallic rods, such as cross-sectional area or diameter, is presented. Impedance characteristics of a solenoid sensor, which are generally based on Maxwell's equations in electromagnetic field, are briefly discussed for inspecting geometrical parameters of the coil sensor and testing materials. A measurement system for detecting the diameter of the metallic rod is implemented. This instrument has capabilities for detecting the sensor output signals and estimating demensions of the testing material, continuously. As a result, it was shown that the eddy current sensor with an encircling coil could estimate the diameter of metallic rod. The implemented measurement system gives accurate information for inspecting the dimension of conducting rod with good sensitivity.

  • PDF

Study on Hydrogen Effect in TIG Welded Stainless Steel (TIG 용접된 스테인리스강의 수소영향에 대한 연구)

  • Lee, Jin-Kyung;Lee, Sang-Pill;Bae, Dong-Su;Lee, Joon-Hyun
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.58-63
    • /
    • 2016
  • A stainless steel has high corrosion resistance because of nickel in material, so it is used as materials for transportation and storage of hydrogen. In this study, TIG(tungsten ingot gas) welding was carried out on the stainless steel using the storage vessel of hydrogen. The microscopic structures at each region of TIG welded material such as HAZ, weld and base metals using optical microscope were observed. And the damage behavior of stainless steel that underwent the hydrogen charging using nondestructive evaluation was also studied. Ultrasonic test, which is the most generalized nondestructive technique, was applied to evaluate the relationship between the ultrasonic wave and mechanical properties at each zone of TIG welded stainless steel. The velocity and attenuation coefficients of ultrasonic wave didn't show a remarkable difference at each region of welded stainless steel. However, the attenuation coefficient was the highest at the weld zone when hydrogen charged stainless steel. In addition, acoustic emission test was also used to study the dynamic behavior of stainless steel experienced both hydrogen charging and weld. Lots of AE event at elastic region of stress-strain curve were occurred both the hydrogen charged specimen and the free specimen.

Numerical and experimental study on evaluating the depth of caisson foundation with Sonic Echo method

  • Tong, Jian-Hua;Liao, Shu-Tao;Liu, Kang-You
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.519-532
    • /
    • 2012
  • Using nondestructive testing techniques to evaluate the length or depth of an existing foundation is an important issue with potential high application values. One of these is to evaluate whether the foundation is broken after severe earthquakes. In this aspect, academic research related to nondestructive evaluation for caisson foundations is rarely reported. The objective of this paper is to study the feasibility of using Sonic Echo method to evaluate the depth of caisson foundations. Two types of caissons, simple cylindrical caisson and compound caisson with chambers, were studied for their responses to the Sonic Echo tests. The study was carried out in numerical simulation with finite element method and experimental way with in-situ tests. A bridge system which spans over Sofong Brook in Taiwan was selected for the tests in situ. The bridge system is still under construction and therefore the effect of different construction stages on the testing results may be studied. In this paper, the parameters to be varied for the studies include the testing locations and the existence of chamber plates, the bottom plate and the top plate. Finally some preliminary conclusions can be reached for a successful test.

High Resolution Computerized Tomography System Using the Microfocus X-Ray for Inspection of Small Specimens (소형 물체의 검사를 위한 고해상도 미세 초점 X선 단층 촬영 시스템)

  • Kim, Young-Joo;Koo, Ja-Yong;Lee, Seung-S.;Kim, Whan-W.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.3
    • /
    • pp.181-190
    • /
    • 1998
  • A computerized tomography system was developed using the X-ray source that has diameter of 5 micrometer. The system is used for the nondestructive testing of specimens with diameter below 20 mm. The convolution back projection algorithm was adopted for the reconstruction of cross sectional image, and the shape of the X-ray beam was let parallel beam or fan beam to compare each resultant image. Our CT system was constructed to operate based on the personal computer. The sectional images of the fabricated specimens were reconstructed and analyzed. The reconstructed images well coincided with real images taken with optical microscope and gave us enough reports on the defects in the ceramic specimen. The resolution of the system regarded as about $20{\sim}30$ micrometers.

  • PDF

Automatic Noncontact Ultrasonic Inspection Technique (비접촉식 초음파탐상방법 자동화 기술)

  • Kim, Y.G.;Ahn, B.Y.;Lee, S.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.4
    • /
    • pp.25-31
    • /
    • 1994
  • A system for EMAT, which generates ultrasound by electro-magnectic forces and performs nondestructive testing in noncontact, was established. By linking it with a 3 axis scanning system and a data acquisition and processing system the automation of EMAT testing was attempted. A EMAT sensor was fabricated and the directivity pattern of it was measured. To be suitable automation, it has a transmitter and a receiver in one case and the main beam direction of it can be controlled by the frequency of driving signal. A program which controls the EMAT system, the 3 axis scanner and the data acquisition and processing system was developed. It also processes acquired data and displays the processing results. IBM-PC/AT compatible PC was used as main controller and the stratage of the program is emulation of real devices on the PC monitor. To provide the performance of the established EMAT system, two aluminium blocks containing artificial flaws and a welded aluminium block were tested. The result of the tests were satisfactory.

  • PDF

Vibration-Based Monitoring of Stay-Cable Force Using Wireless Piezoelectric-Based Strain Sensor Nodes

  • Nguyen, Khac-Duy;Kim, Jeong-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.669-677
    • /
    • 2012
  • This study presents a method to monitor cable force using wireless sensor nodes and piezoelectric sensors. The following approaches are carried out to achieve the objective. Firstly, the principle of piezoelectric materials (e.g., PZT) as strain sensors is reviewed. A cable force estimation method using dynamic features of cables measured by piezoelectric materials is presented. Secondly, the design of an automated cable force monitoring system using the data acquisition sensor-node Imote2/SHM-DAQ is described. The sensor node is originally developed by University of Illinois at Urbana-Champaign and is adopted in this study to monitor strain-induced voltage from PZT sensors. The advantages of the system are cheap, and eligible for wireless communication and automated operation. Finally, the feasibility of the proposed monitoring system is evaluated on a lab-scaled cable.