• Title/Summary/Keyword: Nondestructive system

Search Result 598, Processing Time 0.024 seconds

Application of Neural Network to Determine the Source Location in Acoustic Emission

  • Lee, Sang-Eun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.6
    • /
    • pp.475-482
    • /
    • 2005
  • The iterative calculation by least square method was used to determine the source location of acoustic emission in rock, as so called "traditional method". The results were compared with source coordinates infered from the application of neural network system for new input data, as so called "new method". Input data of the neural network were based on the time differences of longitudinal waves arrived from acoustic emission events at each transducer, the variation of longitudinal velocities at each stress level, and the coordinates of transducer as in the traditional method. The momentum back propagation neural network system adopted to determine source location, which consists of three layers, and has twenty-seven input processing elements. Applicability of the new method were identified, since the results of source location by the application of two methods were similarly concordant.

Nondestmctive Evaluation of Cracks in Metal Plates by using SQUID Gradiometer

  • 황윤석;김진태;이순걸;박용기
    • Progress in Superconductivity
    • /
    • v.3 no.2
    • /
    • pp.159-162
    • /
    • 2002
  • We have detected cracks inside multi-layer metal sheets with nondestructive evaluation system consisting of SQUID gradiometer. Double D-shape coil was carefully designed with computer simulation for spatial distribution of magnetic field. It was aligned and placed in between SQUID and metal sheets in order to reduce the field effect to SQUID and to maximize eddy current in the sheets. The metal plate in bottom of the metal stack contained artificial cracks which were scanned by an X-Y scanning system. The information of crack position and size could be estimated by analysis of SQUID signal. Details of the results will be discussed .

  • PDF

A Development of Computer Controlled 5 Axis Ultrasonic Testing System (컴퓨터제어식 5축 자동초음파탐상장치의 개발)

  • Kim, Y.S.;Kim, J.G.;Park, J.C.;Kim, N.I.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.10 no.2
    • /
    • pp.32-37
    • /
    • 1990
  • A computer controlled 5 axis ultrasonic testing system is developed in order to detect flaws in special parts with complex shape. The various kinds of ultrasonic test can be performed automatically using computer program which was developed by DHI(Daewoo Heavy Industries Ltd.). By use of this computer program, the detector location can be programed and the amplitude signal of echo can be processed digitally. The test results can be plotted graphically on a high resolution display monitor in real time base. The test data can be also saved in magnetic memory devices(HDD or FDD) as well as in the form of hard copy through color printer. The computer software contains c- scan, c+a scan processing programs as well as statistical analysis for test data.

  • PDF

Wireless Impedance Sensor with PZT-Interface for Prestress-Loss Monitoring in Prestressed Concrete Girder

  • Nguyen, Khac-Duy;Lee, So-Young;Kim, Jeong-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.6
    • /
    • pp.616-625
    • /
    • 2011
  • Ensuring the designed prestress force is very important for the safety of prestressed concrete bridge. The loss of prestress force in tendon could significantly reduce load carrying capacity of the structure. In this study, an automated prestress-loss monitoring system for prestressed concrete girder using PZT-interface and wireless impedance sensor node is presented. The following approaches are carried out to achieve the objective. Firstly, wireless impedance sensor nodes are designed for automated impedance-based monitoring technique. The sensor node is mounted on the high-performance Imote2 sensor platform to fulfill high operating speed, low power requirement and large storage memory. Secondly, a smart PZT-interface designed for monitoring prestress force is described. A linear regression model is established to predict prestress-loss. Finally, a system of the PZT-interface interacted with the wireless sensor node is evaluated from a lab-scale tendon-anchorage connection of a prestressed concrete girder.

The Mechanical Properties and the Nondestructive Evaluation of Dissimilar Friction Welded Steel Bars (이종마찰용접 강봉재의 기계적특성과 비파괴 평가)

  • Jung, W.T.;Kong, Y.S.;Kim, S.J.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.77-82
    • /
    • 2006
  • In this study, dissimilar friction welding were produced using 15mm diameter solid bar in chrome molybedenum steel(SCM440) to carbon steel(S45C) to investigate their mechanical properties and the relationship between the weld parameters and the nondestructive coefficients, such as AE counts and ultrasonic attenuation coefficient. The main friction welding parameters were selected to endure good quality welds on the basis of visual examination, tensile tests, Vickers hardness surveys of the bond of area and heat affected zone. The specimens were tested as-welded and post weld heat treated(PWHT). The tensile strength of the friction welded steel bars was increased up to 100% of the S45C base metal under the condition of all heating time. The ductility of PWHT specimens is higher than as-welded.

  • PDF

Acceleration Signal Characteristics of Steel Plate Impacted by Metallic Loose Parts (금속파편충격에 의한 강판의 가속도신호 특성)

  • Sung, K.Y.;Yoon, Y.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.12 no.2
    • /
    • pp.21-29
    • /
    • 1992
  • Acceleration signal characteristics of a steel plate, impacted by steel balls, were studied in an attempt to apply the experimental results to the impact location and mass estimation of metallic loose parts in the cooling system of nuclear power plants. Experimental results show that the variation of maximum acceleration amplitude and impact contact time due to the change of ball mass and impact velocity can be well explained by the Hertz impact theory. The frequency spectral pattern shifted slightly in spite of the increase of impact velocity and impact location. Ball mass, however, strongly affected the frequency spectral pattern. Hence the frequency spectrum can be used for estimation of the mass of unknown loose parts in the cooling system.

  • PDF

Micro-Structure Measurement and Imaging Based on Digital Holography

  • Kim, Kyeong-Suk;Jung, Hyun-Chul;Chang, Ho-Seob;Kee, Chang-Doo;Akhter, Naseem
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.257-260
    • /
    • 2010
  • Advancements in the imaging and computing technology have opened the path to digital holography for non-destructive investigations of technical samples, material property measurement, vibration analysis, flow visualization and stress analysis in aerospace industry which has widened the application of digital holography in the above fields. In this paper, we demonstrate the non-destructive investigation and micro-structure measurement application of digital holography to the small particles and a biological sample. This paper gives a brief description of the digital holograms recorded with this system and illustratively demonstrated.

Review of Radio Frequency Identification and Wireless Technology for Structural Health Monitoring

  • Dhital, Dipesh;Chia, Chen Ciang;Lee, Jung-Ryul;Park, Chan-Yik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.244-256
    • /
    • 2010
  • Radio frequency identification(RFID) combined with wireless technology has good potential for structural health monitoring(SHM). We describe several advantages of RFID and wireless technologies for SHM, and review SHM examples with working principles, design and technical details for damage detection, heat exposure monitoring, force/strain sensing, and corrosion detection in concrete, steel, carbon fiber reinforced polymer(CFRP), and other materials. Various sensors combined with wireless communication are also discussed. These methodologies can be readily developed, implemented, and customized. There are some technical difficulties, but solutions are being addressed. Lastly, a surface acoustic wave-based RFID system is presented, and possible future trends of SHM based on RFID and wireless technology are presented.

Fruit Classification System with a Color Image Boundary Tracking

  • Choi, Youn-Ho;Choi, Byeong-Tae;Lee, Moo-Young;Im, Sung-Woon;Kwon, Woo-Hyen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.77.4-77
    • /
    • 2001
  • The quality of agricultural products is classified with various factors which are measured and determined by destructive and/or nondestructive method. NIR spectrum analysis method is used to determine internal qualities such as a brix and an acidity. CCD color camera is used to measure external quality like color and a size of fruit. today, nondestructive methods are widely researched. The quality and the garde of fruit loaded into a cup automatically and measured in real time by camera and NIR system is determined by internal and external factors. This paper proposes modified boundary tracking algorithm which detects the contour of fruit´s color image and make chain code faster than conventional method ...

  • PDF

Numerical Verification of B-WIM System Using Reaction Force Signals

  • Chang, Sung-Jin;Kim, Nam-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.637-647
    • /
    • 2012
  • Bridges are ones of fundamental facilities for roads which become social overhead capital facilities and they are designed to get safety in their life cycles. However as time passes, bridge can be damaged by changes of external force and traffic environments. Therefore, a bridge should be repaired and maintained for extending its life cycle. The working load on a bridge is one of the most important factors for safety, it should be calculated accurately. The most important load among working loads is live load by a vehicle. Thus, the travel characteristics and weight of vehicle can be useful for bridge maintenance if they were estimated with high reliability. In this study, a B-WIM system in which the bridge is used for a scale have been developed for measuring the vehicle loads without the vehicle stop. The vehicle loads can be estimated by the developed B-WIM system with the reaction responses from the supporting points. The algorithm of developed B-WIM system have been verified by numerical analysis.