• Title/Summary/Keyword: Nondestructive

Search Result 2,613, Processing Time 0.022 seconds

Accurate Detection of a Defective Area by Adopting a Divide and Conquer Strategy in Infrared Thermal Imaging Measurement

  • Jiangfei, Wang;Lihua, Yuan;Zhengguang, Zhu;Mingyuan, Yuan
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1644-1649
    • /
    • 2018
  • Aiming at infrared thermal images with different buried depth defects, we study a variety of image segmentation algorithms based on the threshold to develop global search ability and the ability to find the defect area accurately. Firstly, the iterative thresholding method, the maximum entropy method, the minimum error method, the Ostu method and the minimum skewness method are applied to image segmentation of the same infrared thermal image. The study shows that the maximum entropy method and the minimum error method have strong global search capability and can simultaneously extract defects at different depths. However none of these five methods can accurately calculate the defect area at different depths. In order to solve this problem, we put forward a strategy of "divide and conquer". The infrared thermal image is divided into several local thermal maps, with each map containing only one defect, and the defect area is calculated after local image processing of the different buried defects one by one. The results show that, under the "divide and conquer" strategy, the iterative threshold method and the Ostu method have the advantage of high precision and can accurately extract the area of different defects at different depths, with an error of less than 5%.

A Study on the Gamma Scanning Test Used for Nondestructive Test Radiation Shielding Material (방사선 차폐체의 감마스케닝검사법에 대한 고찰)

  • Seo, Kyung-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.4
    • /
    • pp.561-567
    • /
    • 1996
  • As nuclear industry in Korea is being expended, the number of user for radioisotope and radiation generators has being remarkably increased. As a result, radiation shielding problem for radiation safety has rasied as a question of great interest nowaday. In this report, gamma scanning test (GST), one of the nondestructive test methods of radiation shielding material was introduced and the review of the test method and its application were described. In addition for accurate evaluation of the test result, necessary basic equipments for the test and for improvement of the equipment were suggested. If the effective test method described above were widely and properly applied by GST related companies, the technology would be used effectively, as one of the safe nondestructive test for radiation shielding material in future.

  • PDF

Development of Computer Based Ultrasonic Flaw Detector for Nondestructive Testing (컴퓨터 내장형 비파괴검사용 초음파탐상기 개발)

  • Lee, Weon-Heum;Kim, J.K.;Kim, Y.R.;Choi, K.S.;Kim, S.H.;Lee, S.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.2
    • /
    • pp.108-113
    • /
    • 1997
  • Ultrasonic testing is one of the most widely used method of nondestructive testing for pre-service inspection(PSI) & in-service inspection(ISI) in structures of bridges, power plants, chemical plants & heavy industrial fields. It is very important to estimate safety, life, quality of structures. Also, a lot of research for quantities evaluation & analyses inspection data is proceeding. But traditional portable ultrasonic flaw detector had been following disadvantages. 1) Analog ultrasonic flaw detector decreased credibility of ultrasonic test, because it is impossible for saving data & digital signal processing. 2) Stand-alone digital ultrasonic flaw detector cannot effectively evaluate received signals because of lack of its storage memory. To overcome this shortcoming, we develop the computer based ultrasonic flaw detector for nondestructive testing. It can store the received signal and effectively evaluate the signal, and then enhance the reliability of the testing results.

  • PDF

Medical Application of the Nondestructive Ultrasonic Tests: Diagnosis of Micro Bone Fractures using Ultrasonic C Scan Images (비파괴 초음파 검사법의 의학적 활용: 초음파 C 스캔 영상을 이용한 미세 골절의 진단)

  • Choi, Min-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.4
    • /
    • pp.377-385
    • /
    • 2002
  • Ultrasonic tests employing non-ionizing radiation are preferred in nondestructive examinations since they are safe and simple in use. The same principles of the techniques have been taken as valuable tools in medical area for the diagnoses of diseases, in other words, defects of the human body. The paper overviews the principles of the medical diagnosis based on nondestructive ultrasonic tests, and then evaluates experimentally the clinical potential of C scan images not popular in medicine, for detecting the micro fractures of the cortical bone. In the experiment the micro bone fractures were created on the femurs of porks by loading three point bending forces (2-4kN) with the speed of 1 mm/min. As the extent of the fracture was altered, not only X ray images but also ultrasonic C scan images using a focused ultrasonic probe resonated at 25 MHz were obtained. The results showed that ultrasonic C scan images were capable of detecting the micro bone fractures which were not possible to identify by conventional X ray images.

Signal Characteristics of Multi-coil Probe for the Test of Reinforcement Embedded in Concrete (다중 코일에 의한 콘크리트내의 철근 탐지 시 신호 특성)

  • Kim, Young-Joo;Lee, Seung-Seok;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.4
    • /
    • pp.285-289
    • /
    • 2000
  • This study suggests a rebar detection technique for simultaneous detection of size and cover of embedded reinforcement in concrete. The structure of the probe made in this study is somewhat different from commercial ones. This probe has three sensing coils. Rebar size and cover depth can be evaluated by detecting and analyzing the signal from them. Amplitude and phase variation of each coil in the probe was investigated using an impedance analyzer and the loci of transfer functions of the coils were analyzed. The locus of transfer function from the sensing coil positioned inside excitation coil was simple as well known, but the others from the coils outside excitation coil were not so. Actual experiment on rebar detection was performed with our probe and an eddy current test system for various rebar sizes and depths. The signal shape according to variation of cover depths showed the same tendency with the transfer function loci acquired by impedance analyzer. The different variation pattern of signal enabled to evaluate rebar size and cover depth simultaneously.

  • PDF

Corrosion Assessment of Storage Tank Floor using Magnetic Flux Leakage Technique (누설자속법을 이용한 저장탱크 바닥판재의 부식 평가)

  • Won, Soon-Ho;Cho, Kyung-Shik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.1
    • /
    • pp.38-45
    • /
    • 2000
  • In this research, MFL technique has been studied for the inspection of storage tank floor. The reference specimens having 20%, 40%, 60% and 80% slot's are fabricated using the carbon steel plates of a 6mm and 10mm thick. Powerful permanent magnets and Hall effect sensors are used to this application. It is shown that our system is able to detect metal loss like a slot. Also, it is possible that slot diameter is measured using transverse type of Hall generator. It is demonstrated that MFL can not differentiate between the response from top side and bottom side slot. Flux leakage response from a bottom side indication is significantly lower in amplitude than that from an equivalent top side slot. It is essential to know this sensor lift-off distance because the MFL signal also changes considerably with the sensor lift-off distance.

  • PDF

Application of Nondestructive Technique on Hydrogen Charging Times of Stainless Steel 304L (스테인리스 304L강의 수소장입시간에 대한 비파괴기법 적용)

  • Lee, Jin-Kyung;Hwang, Seung-Kuk;Lee, Sang-Pill;Bae, Dong-Su;Son, Young-Seok
    • Journal of Power System Engineering
    • /
    • v.19 no.5
    • /
    • pp.60-66
    • /
    • 2015
  • Embrittlement of material by hydrogen charging should be cleared for safety of storage vessel of hydrogen and components deal with hydrogen. A stainless steel is generally used as materials for hydrogen transportation and storage, and it has a big advantage of corrosion resistance due to nickel component in material. In this study, microscopic damage behavior of stainless steel according to the hydrogen charging time using nondestructive evaluation was studied. The surface of stainless steel became more brittle as the hydrogen charging time increased. The parameters of nondestructive evaluation were also changed with the embrittlement of stainless steel surface by hydrogen charging. Ultrasonic test, which is the most generalized nondestructive technique, was applied to evaluate the relationship between the ultrasonic wave and mechanical properties of stainless steel by hydrogen charging. The attenuation coefficient of ultrasonic wave was increased with hydrogen charging time because of surface embrittlement of stainless steel. In addition, acoustic emission test was also used to study the dynamic behavior of stainless steel experienced hydrogen charging. AE event at the hydrogen charged specimen was obviously decreased at the plastic zone of stress-strain curves, while the number of event for the specimen of hydrogen free was dramatically generated when compared with the specimens underwent hydrogen charging.

Nondestructive Inspection of Launch Vehicle Structural Components (우주 발사체 구조 요소의 비파피검사)

  • Kong, Cheol-Won;Youn, Jong-Hoon;Park, Jae-Sung;Eun, Se-Won;Jang, Young-Soon;Yi, Yeong-Moo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.331-337
    • /
    • 2009
  • Space launch vehicles require highly reliable, lightweight structures. It is thus important to monitor the structural health of these components with nondestructive inspections. In this paper, we studied an example of a nondestructive inspection that was partially applied to the manufacture and inspection of a launch vehicle. Ultrasonic tests, X-rays, tapping, and acoustic emissions comprised the inspection method. A payload fairing, high pressure tank, fastener part, and bonding part were used as hardware to be inspected. We proposed a quantitative standard for debonding inspection of the payload fairing and acoustic emission data for the proof test of the high pressure tank. We analyzed the fracture mode of the sandwich fastener part according to frequency changes. We also proposed a standard specimen for ultrasonic inspection of bonds of different materials. The present analyses and results provide data for evaluation of the launch operation sequence to ensure launch vehicles afford high reliability.

Elastic Imaging of Material Surface by Ultrasonic Atomic Force Microscopy (초음파 원자 현미경을 이용한 재료 표면의 탄성 이미지화)

  • Kim, C.S.;Park, Tae-Sung;Park, It-Keun;Lee, Seung-Seok;Lee, C.J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.293-298
    • /
    • 2009
  • The ultrasonic atomic force microscope(UAFM) has been developed in order to enhance the characterization technology for nano-scale surface combining ultrasonic property to atomic force microscope. This UAFM technique enables elasticity imaging due to the physical properties on the heterogeneous surface in addition to the novel topography of surface height in the nano-surface layer. In this study, the prototype UAFM system was constructed and applied to several materials, silicon deposited wafer, spherodized cold heading steel, and carbon fiber reinforced plastic specimen. Clear elastic contrast was successfully obtained using this developed prototype UAFM.

Vibration-Based Nondestructive Evaluation of Thermal Stress-Induced Damage in Thin Composite Laminates (복합 적층 박판의 열응력 파손에 대한 진동 활용 비파괴평가)

  • Lee, Sung-Hyuk;Choi, Nak-Sam;Lee, Jong-Ki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.5
    • /
    • pp.347-355
    • /
    • 1999
  • A feasibility investigation on vibration-based nondestructive evaluation of thermal stress-induced micro-failure in the free edge region of thin composite laminates(1mm thick) has been carried out. The failure occurrence and damage zone, which were predicted by the three-dimensional finite-element thermal stress analysis, were observed using the ultrasonic C-scan and optical microscopy. Analysis of the vibration spectrum measured from the laminate beam specimens by the vibration sweep test exhibited that the obvious decrease in resonancy frequency and some considerable increase in damping factor were associated with the micro-failure formation. The vibration technique utilizing short beam and high resonant frequency was found to be very sensitive to the thermal stress-induced damage in the thin laminates.

  • PDF