• Title/Summary/Keyword: Nondenaturing gel

Search Result 28, Processing Time 0.027 seconds

Application of Temperature Gradient Gel Electrophoresis To cAMP Receptor Protein (온도 기울기 전기영동장치의 CAMP 수용성 단백질에 응용)

  • Gang, Jong-Back;Cho, Hyun-Young
    • Journal of Life Science
    • /
    • v.14 no.2
    • /
    • pp.309-314
    • /
    • 2004
  • Cyclic AMP receptor protein (CRP) is involved in the transcriptional regulation of more than 100 genes in E. coli. CRP dimer is converted into active form via the sequential conformation change of cAMP binding pocket, hinge region and HTH DNA binding motif by binding of cAMP. The temperature gradient gel electrophoresis (TGGE) was applied to CRP protein to know whether it was an efficient technique to study the conformational transitions and the thermal stability. TGGE showed the unfolding process of wild-type and S83G CRP proteins with the temperature gradient set from 29 to 71$^{\circ}C$ on nondenaturing polyacrylamide gel. Melting temperature (Tm) was 57$\pm$1 and 55$\pm$1$^{\circ}C$ for wild-type and S83G CRP, respectively in acidic buffer[89.8 mM Glycine and 24 mM Boric acid (pH 5.8)].

Separation and Characterization of Two Forms of Acetolactate Synthase from Etiolated Pea Seedlings

  • Shin, Yong-Soo;Chong, Chom-Kyu;Choi, Jung-Do
    • BMB Reports
    • /
    • v.32 no.4
    • /
    • pp.393-398
    • /
    • 1999
  • Acetolactate synthase (ALS) catalyzes the first reaction common to the biosynthesis of L-valine, L-leucine, and L-isoleucine. ALS is the target site of several classes of herbicides, including the sulfonylureas, the imidazolinones, and the triazolopyrimidines. Two forms of ALS (ALS I and ALS II) which have different affinity for Heparin have been separated from etiolated pea seedlings. The substrate saturation curves of both ALS I and ALS II were hyperbolic in contrast to previous reports. The two forms of ALS showed significant differences in their physical and kinetic properties. The values of $K_m$ for ALS I and ALS II were 9.0 mM and 4.8 mM, respectively. The pI values for ALS I and ALS II were determined to be 5.3 and 5.75 by isoelectric focusing, respectively. The native molecular weights for ALS I and ALS II obtained by nondenaturing gel electrophoresis and activity staining were 124 and 244 kDa, respectively. They also exhibited different sensitivity to feedback inhibition by end-product amino acids and inhibition by Cadre, an imidazolinone herbicide.

  • PDF

Characterization of Two Forms of Acetolactate Synthase from Barley

  • Yoon, Jong-Mo;Yoon, Moon-Young;Kim, Young-Tae;Choi, Jung-Do
    • BMB Reports
    • /
    • v.36 no.5
    • /
    • pp.456-461
    • /
    • 2003
  • Acetolactate synthase (ALS) catalyzes the first common step in the biosynthesis of valine, leucine, and isoleucine. ALS is the target site for several classes of herbicides, including sulfonylureas, imidazolinones, and triazolopyrimidines. Two forms of ALS (designated ALS I and ALS II) were separated from barley shoots by heparin affinity column chromatography. The molecular masses of native ALS I and ALS II were determined to be 248 kDa and 238 kDa by nondenaturing gel electrophoresis and activity staining. Similar molecular masses of two forms of ALS were confirmed by a Western blot analysis. SDS-PAGE and Western blot analysis showed that the molecular masses of the ALS I and ALS II subunits were identical - 65 kDa. The two ALS forms exhibited different properties with respect to the values of $K_m$, pI and optimum pH, and sensitivity to inhibition by herbicides sulfonylurea and imidazolinone as well as to the feedback regulation by the end-product amino acids Val, Leu, and Ile. These results, therefore, suggest that the two ALS forms are not different polymeric forms of the same enzyme, but isozymes.

Asymmetric Polymerase Chain Reaction-Single-Strand Conformation Polymorphism (Asymmetric PCR-SSCP) as a Simple Method for Allele Typing of HLA-DRB

  • Kang, Joo-Hyun;Kim, Kyeong-Hee;Maeng, Cheol-Young;Kim, Kil-Lyong
    • BMB Reports
    • /
    • v.32 no.6
    • /
    • pp.529-534
    • /
    • 1999
  • Asymmetric PCR and single-strand conformation polymorphism (SSCP) methods were combined to analyze human leukocyte antigen (HLA)-DRB allele polymorphism. Asymmetric PCR amplification was applied to generate single-stranded DNA (ssDNA) using the nonradioactive oligonucleotide primers desinged for the polymorphic exon 2 region. The conformational differences of ssDNAs, depending on the allele type, were analyzed by nondenaturing polyacrylamide gel electrophoresis and visualized by ethidium bromide staining. The ssDNAs were clearly separated from double-stranded DNA without interference and obviously migrated depending on their allele type. This method was applied to the genomic DNA either from homozygous or from heterozygous cell lines containing the DR4 allele as template DNA using DR4-specific primers, and satisfying results were obtained. Compared to the standard PCR-SSCP method, this asymmetric PCR-SSCP method has advantages of increased speed, reproducibility, and convenience. Along with PCR-SSP or sequence-based typing, this method will be useful in routine typing of HLA-DRB allele.

  • PDF

Thermus caldophilus GK24로부터 내열성 $\beta$-galactosidase의 최적 생산

  • Yoo, Jinsang;Kim, Hyunkyu;In, Man-Jin;Kim, Min-Hong;Kwon, Suk-Tae
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.3
    • /
    • pp.298-304
    • /
    • 1997
  • Thermus caldophilus GK24 was selected as sources of thermostable $\beta$-galactosidase from a survey of genus Thermus. T. caldophilus GK24 (Tca) $\beta$-galactosidase was found to be inducible. The enzyme was optimally active at 75$\circ$C. Enzyme induction was achieved by addition of lactose, galactose and cellobiose to basal media. The addition of glucose to culture media had a repressive effect on further enzyme synthesis. T caldophilus GK24 was tested for production of $\beta$-galactosidase by addition of various concentration of lactose, galactose and cellobiose to standard media. Cellobiose was found to be effective for the $\beta$-galactosidase induction. The optimal induction medium for production of $\beta$-galactosidase was composed of 0.2% cellobiose, 0.3% bactotryptone, 0.3% yeast extract, basal salts and Tris/HCI(pH 7.8). The activity of the enzyme in the optimal induction medium increased nearly 16.5-fold compared to the standard medium. Tca $\beta$-galactosidase was detected when cell extracts was subjected to electrophoresis in a nondenaturing polyacryamide gel and stained for activity with 6-bromo-2-naphtyl-$\beta$-D-galactopyranoside(BNG).

  • PDF

Purification and Properties of Bovine Skeletal Muscle Proteasome

  • Yamamoto, S.;Gerelt, B.;Nishiumi, T.;Suzuki, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.6
    • /
    • pp.884-891
    • /
    • 2005
  • This paper describes the purification and properties of a multicatalytic proteinase complex, proteasome, from bovine skeletal muscle, in comparision with proteasome prepared from other species or organs. The purified bovine skeletal muscle proteasome exhibited a single band on polyacrylamide gel electrophoresis under nondenaturing conditions. Bovine skeletal muscle proteasome degraded synthetic peptides maximally at pH 8.0. Relative to pH 8.0, activities were gradually decreased with the lowering pH, but the extent of decrease was substrate-dependent, and the activity at pH 5.5 still retained 78-10% of the activity at pH 8.0, indicating the possibility that the proteasome is active in muscle during aging. When the proteasome was heated at 60$^{\circ}C$ for 15 or 30 min and treated in the presence of 0.0125% SDS, the activity increased over 1.8 and 3.1 times (LLVY (Suc-Leu-Leu-Val-Tyr-NH-Mec) as a substrate), respectively. These results (activation with heat or SDS) indicate that the hydrolytic activity of proteasome was stimulated under mild denaturing conditions. The characteristics of the bovine skeletal muscle proteasome obtained in our experiment were almost the same as those of the proteasome prepared from other species or organs.

Role of general esterases in deltamethrin resistance mechanism of diamondback moth, Plutrlla xylostella L. (배추좀나방(Pulltella xylostella L.)의 deltamethrin 저항성 기작에 관한 에스테라제의 역할)

  • 김용균;장동걸
    • Korean journal of applied entomology
    • /
    • v.35 no.1
    • /
    • pp.74-79
    • /
    • 1996
  • General esterases were analysed quantitatively and qualitatively to see their role in deltamethrin resistance mechanisms of the diamondback moth, Plutella xylostella L. Selection with 0.1 g of deltamethrin in each generation induced the moth to decrease susceptibility to the insecticide and to increase esterase activities of the fourth instar larvae. Both characters were highly correlated so that the correlation coefficient (r) between LDSo @g) of deltamethrin and esterase activities (~M/min/pg) was 0.9918 (P=0.0082). Nondenaturing PAGE (6%) separated 17 esterase bands from the whole body extracts of the fourth instar larvae. Deltamethrin-selected populations had fewer esterase bands than had the unselected. Four esterase bands (E3, E4, Ell, and E13) were, however, specific to deltamethrin-selected populations.

  • PDF

Purification and Characterizationof Soluble Acid Invertase from the Hypocotyls of Mung Bean (Phaseolus radiatus L.) (녹두의 하배축에서 분리한 Soluble Acid Invertase의 정제와 특성)

  • Young-Sang Kim
    • Journal of Plant Biology
    • /
    • v.38 no.3
    • /
    • pp.251-258
    • /
    • 1995
  • The soluble acid invertase ($\beta$-D-fructofuranoside fructohydrolase, EC 3.2.1.26) was isolated and characterized from the hypocotyls of mung bean (Phaseolus radiatus L.). The enzyme was purified to apparent homogeneity by consecutive step using diethylaminoethyl (DEAE)-cellulose anion exchange, Concanavalin (Con) A affinity and Sephacryl S-300 chromatography. The overall purification was about 148-fold with a yield of about 15%. The finally purified enzyme exhibited a specific activity of about 139 $\mu$mol of glucose produced mg-1 protein min-1 at pH 5.0 and appeared to be a single protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and nondenaturing PAGE. The enzyme had the native molecular weight of 70 kD and subunit molecular weight of 70 kD as estimated by Sephadex G-200 chromatography and SDS-PAGE, respectively, suggesting that the enzyme was composed of a monomeric protein. On the other hand, the enzyme appeared to be a glycoprotein containing N-linked high mannose oligosaccharide chain on the basis of its ability to bind to the immobilized C on A. The enzyme had a Km for sucrose of 1.8 mM at pH 5.0 and maximum activity around pH 5.0. The enzyme showed highest enzyme activity with sucrose as substrate, but the activity was slightly measured with raffinose and cellobise. No activity was measured with maltose and lactose. These results indicate the soluble acid invertase is a $\beta$-fructofuranosidase.

  • PDF

Purification and Characterization of an Extradiol Dioxygenase Which Preferentially Acts on 4-Methylcatechol

  • Ha, You-Mee;Jung, Young-Hee;Kwon, Dae-Young;Kim, Young-Chang;Kim, Young-Soo;Kim, Chy-Kyung;Min, Kyung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.249-254
    • /
    • 1999
  • A catechol 2,3-dioxygenase (C23O) was purified to apparent homogeneity from Pseudomonas putida SU10 through several purification steps consisting of ammonium sulfate precipitation and chromatographies on DEAE 5PW, Superdex S-200, and Resource-Q. Gel filtration indicated a molecular mass under nondenaturing conditions of about 130 kDa. The enzyme has a subunit of 34 kDa as was determined by SDS-PAGE. These results suggest that the native enzyme is composed of four identical subunits. The N-terminal amino acid sequence (30 residues) of the enzyme has been determined and exhibits high identity with other extradiol dioxygenases. The reactivity of this enzyme towards catechol and methyl-substituted catechols is somewhat different from that seen for other catechol 2,3-dioxygenases, with 4-methylcatechol cleaved at a higher rate than catechol or 3-methylcatechol. $K_m$ values of the enzyme for these substrates are between 3.5 and 5.7 M.

  • PDF

Purification and Characterization of Alkaline Invertase from the Hypocotyls of Mung Bean (Phaseolus raiatus L.) (녹두의 하배축에서 분양한 Alkaline lnvertase의 정제와 특성)

  • Young-Sang Kim
    • Journal of Plant Biology
    • /
    • v.38 no.4
    • /
    • pp.349-357
    • /
    • 1995
  • The alkaline invertase ($\beta$-D-fructofuranoside fructohydrolase, EC 3.2.1.26) was isolated and characterized from the hypocotyls of mung bean (Phaseolus radiatus L.). The enzyme was purified by consecutive step using diethylaminoethyl (DEAE)-cellulose anion exchange, 1st Sephadex G-200, DEAE-Sephadex A50 and 2nd Sephadex G-200 chromatography. The overall purification was about 77-fold with a yield of about 6%. The finally purified enzyme exhibited a specific activity of about 48 $\mu$mol of glucose produced mg-1 protein min-1 at pH 7.0 and appeared to be a single protein by nondenaturing polyacrylamide gel electrophoresis (PAGE). The enzyme had the native molecular weight of 450 kD and subunits molecular weight of 63 kD and 38 kD as estimated by Sephadex G-200 chromatography and SDS-PAGE, respectively, suggesting that the enzyme is a heteromultimeric protein composed of two types of subunits. On the other hand, the enzyme appeared to be not a glycoprotein according to the results of Con A chromatography and glycoprotein staining. The enzyme had a Km for sucrose of 19.7 mM at pH 7.0 and maximum activity around pH 7.5. The enzyme was most active with sucrose as substrate, compared to raffinose, cellobiose, maltose and lactose. These results indicate the alkaline invertase is a $\beta$-fructofuranosidase.

  • PDF