• 제목/요약/키워드: Noncoding RNA

검색결과 104건 처리시간 0.021초

LINC00562 drives gastric cancer development by regulating miR-4636-AP1S3 axis

  • Lin Xu;Daiting Liu;Xun Wang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권3호
    • /
    • pp.197-208
    • /
    • 2023
  • Dysregulation of certain long non-coding RNAs may facilitate tumor initiation and progression. However, numerous carcinogenesis-related long noncoding RNAs have not been characterized. The goal of this study was to elucidate the role of LINC00562 in gastric cancer (GC). The expression of LINC00562 was analyzed using real-time quantitative PCR and Western blotting. The proliferative capacity of GC cells was determined using Cell Counting Kit-8 and colony-formation assays. The migration of GC cells were evaluated using wound-healing assays. The apoptosis of GC cells was assessed by measuring the expression levels of apoptosis-related proteins (Bax and Bcl-2). Xenograft models in nude mice were constructed for in vivo functional analysis of LINC00562. The binding relationship between miR-4636 and LINC00562 or adaptor protein complex 1 sigma 3 (AP1S3), obtained from public databases, was confirmed using dual-luciferase and RNA-binding protein immunoprecipitation experiments. LINC00562 was expressed in GC cells at high levels. Knockdown of LINC00562 repressed GC cell growth and migration, promoted apoptosis in vitro, and inhibited tumor growth in nude mouse models. LINC00562 directly targeted miR-4636, and miR-4636 depletion restored the GC cell behavior inhibited by LINC00562 absence. AP1S3, an oncogene, binds to miR-4636. MiR-4636 downregulation increased AP1S3 level, restoring GC cell malignant behaviors inhibited by AP1S3 downregulation. Thus, LINC00562 exerts carcinogenic effects on GC development by targeting miR-4636-mediated AP1S3 signaling.

microRNA 발현 데이터의 상관관계 분석을 통한 microRNA Functional Family 탐색 (Defining microRNA functional families through correlation analysis of microRNA microarray data)

  • 남진우;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (A)
    • /
    • pp.13-15
    • /
    • 2006
  • microRNA는 유전자의 전사 후 과정에서 negative regulation을 담당하는 small noncoding RNA의 한 증류이다. 최근까지 330여개의 인간 microRNA가 발견되었지만 그들의 기능이 밝혀진 것은 소수에 불과하다. microRNA의 기능은 3'UTR에 불완전 상보결합을 통해 negative regulation을 받게 되는 유전자의 기능으로부터 유추되는 것이 일반적이다. 특별히 유전체상에 군집화 된 microRNA들은 하나의 전사체로부터 발현되는 것으로 판단되며, 같은 또는 관련된 기능을 하거나 같은 목표 유전자를 조절하기 위한 functional family일 가능성이 높다. 또한 이러한 functional family는 하나의 전사체로부터 발현되기 때문에, 조직별로 조건별로 같은 발현 패턴을 보여야 한다. 본 연구에서는 발현데이터로부터 microRNA functional family를 탐색하기 위해, 5개의 연구 그룹에서 공개한 조직별 microRNA 발현데이터를 표준화 작업을 거친 후 통합하고 k-nearest neighbor 알고리즘을 이용해 결측치를 보정한 후 microRNA 발현사이의 correlation을 계산한다. 이때 데이터 통합에서 생기는 문제에 robust한 결과를 얻기 위해 실제 발현데이터가 아닌 rank 데이터부터 correlation을 측정한다. 계산된 spearman ranked correlation 결과와 microRNA의 genomic coordination 정보로부터 34개의 functional family를 정의할 수 있었다.

  • PDF

The Complete Mitochondrial Genome of Dendronephthya gigantea (Anthozoa: Octocorallia: Nephtheidae)

  • Park, Eun-Ji;Kim, Bo-A;Won, Yong-Jin
    • Animal Systematics, Evolution and Diversity
    • /
    • 제26권3호
    • /
    • pp.197-201
    • /
    • 2010
  • We sequenced the whole mitochondrial genome of Dendronephthya gigantea (Anthozoa: Octocorallia: Nephteidae), the first mitochondrial genome sequence report in the Family Nephtheidae. The mitochondrial genome of D. gigantea was 18,842 bp in length, and contained 14 protein coding genes (atp6 and 8, cox1-3, cytb, nd1-6 and 4L, and msh1), two ribosomal RNAs, and only one transfer RNA. The gene content and gene order is identical to other octocorals sequenced to date. The portion of the noncoding regions is slightly larger than the other octocorals (5.08% compared to average 3.98%). We expect that the information of gene content, gene order, codon usage, noncoding region and protein coding gene sequence could be used in the further analysis of anthozoan phylogeny.

A novel model of THO/TREX loading onto target RNAs in metazoan gene expression

  • Hur, Junho K.;Chung, Yun Doo
    • BMB Reports
    • /
    • 제49권7호
    • /
    • pp.355-356
    • /
    • 2016
  • The THO/TREX complex consists of several conserved subunits and is required for mRNA export. In metazoans, THO/TREX binds a subset of mRNAs during RNA splicing, and facilitates their nuclear export. How THO/TREX selects RNA targets is, however, incompletely understood. In our recent study, we reported that THO is loaded onto Piwi-interacting RNA (piRNA) precursor transcripts independent of splicing, and facilitates convergent transcription in Drosophila ovary. The precursors are later processed into mature piRNAs, small noncoding RNAs that silence transposable elements (TEs). We observed that piRNAs originating from dual-strand clusters, where precursors are transcribed from both strands, were specifically affected by THO mutation. Analysis of THO-bound RNAs showed enrichment of dual-strand cluster transcripts. Interestingly, THO loading onto piRNA precursors was dependent on Cutoff (Cuff), which comprises the Rhino-Deadlock-Cutoff (RDC) complex that is recruited to dual-strand clusters by recognizing H3K9me3 and licenses convergent transcription from he cluster. We also found that THO mutation affected transcription from dual-strand clusters. Therefore, we concluded that THO/TREX is recruited to dual-strand piRNA clusters, independent of splicing events, via multi-protein interactions with chromatin structure. Then, it facilitates transcription likely by suppressing premature termination to ensure adequate expression of piRNA precursors.

Single-molecule fluorescence in situ hybridization: Quantitative imaging of single RNA molecules

  • Kwon, Sunjong
    • BMB Reports
    • /
    • 제46권2호
    • /
    • pp.65-72
    • /
    • 2013
  • In situ detection of RNAs is becoming increasingly important for analysis of gene expression within and between intact cells in tissues. International genomics efforts are now cataloging patterns of RNA transcription that play roles in cell function, differentiation, and disease formation, and they are demon-strating the importance of coding and noncoding RNA transcripts in these processes. However, these techniques typically provide ensemble averages of transcription across many cells. In situ hybridization-based analysis methods complement these studies by providing information about how expression levels change between cells within normal and diseased tissues, and they provide information about the localization of transcripts within cells, which is important in understanding mechanisms of gene regulation. Multi-color, single-molecule fluorescence in situ hybridization (smFISH) is particularly useful since it enables analysis of several different transcripts simultaneously. Combining smFISH with immunofluorescent protein detection provides additional information about the association between transcription level, cellular localization, and protein expression in individual cells.

한탄바이러스 Nucleocapsid Protein 발현에 있어 S Genome 내 Noncoding Region의 역할 (The Role of Noncoding Region in Hantaan Viral S Genome for Expression of Nucleocapsid Protein)

  • 유정희;이연승;이호동;박찬;박근용;이평우
    • 대한바이러스학회지
    • /
    • 제30권1호
    • /
    • pp.39-49
    • /
    • 2000
  • The genome of Hantaan virus, the prototype of the hantavirus genus, is composed of three segmented, single stranded negative sense RNA genome. The 5' and 3' termini of the Hantaan virus RNA genome contain noncoding regions (NCRs) that are highly conserved and complementary to form panhandle structures. There are some reports that these NCRs seems to control gene expression and viral replication in influenza virus and vesicular stomatitis virus. In this study, we examined whether NCRs in Hantaan virus playa role in expression of the viral nucleocapsid protein (Np) and foreign (luciferase) gene. The 5' and/or 3' NCR-deleted mutants were constructed and analysed. The Np expression of 5' NCR-deleted clone was similar to that of the clone containing full S genome. In the case of 3' NCR-deleted clone, it showed 40% reduction. To investigate the role of NCR in foreign gene expression, the clones which are replaced ORF of Hantaan viral Np gene with that of luciferase gene were constructed. The results were similar to those of the experiments using Np gene. These results suggest that 3' NCR is more important than 5' NCR in protein expression. To find out a critical region of 3' NCR in protein expression, several clones with a deleted part of 3' NCR were constructed and analyzed. The deletion of the conserved region in 3' NCR showed $20{\sim}30%$ decrease in Np expression. However there were no change in luciferase activities between clones with or without non-conserved region of 3' NCR. These results suggest that the 3' NCR of Hantaan virus S genome, especially conserved region in 3' NCR, plays an important role in the expression of Hantaan viral Np and foreign genes.

  • PDF

Circulating HOTAIR LncRNA Is Potentially Up-regulated in Coronary Artery Disease

  • Avazpour, Niloofar;Hajjari, Mohammadreza;Yazdankhah, Saeed;Sahni, Azita;Foroughmand, Ali Mohammad
    • Genomics & Informatics
    • /
    • 제16권4호
    • /
    • pp.25.1-25.5
    • /
    • 2018
  • Coronary artery disease (CAD) is one of the leading causes of death and disability all around the world. Recent studies have revealed that aberrantly regulated long non-coding RNA (lncRNA) as one of the main classes of cellular transcript plays a key regulatory role in transcriptional and epigenetic pathways. Recent reports have demonstrated that circulating lncRNAs in the blood can be potential biomarkers for CAD. HOTAIR is one of the most cited lncRNAs with a critical role in the initiation and progression of the gene expression regulation. Recent research on the role of the HOTAIR in cardiovascular disease lays the basis for the development of new studies considering this lncRNA as a potential biomarker and therapeutic target in CAD. In this study, we aimed to compare the expression of HOTAIR lncRNA in the blood samples of patients with CAD and control samples. The expression level was examined by semi-quantitative reverse transcriptase polymerase chain reaction technique. Our data shows that expression of HOTAIR is up-regulated in blood samples of patients with CAD.

Use of cutting-edge RNA-sequencing technology to identify biomarkers and potential therapeutic targets in canine and feline cancers and other diseases

  • Youngdong Choi;Min-Woo Nam;Hong Kyu Lee;Kyung-Chul Choi
    • Journal of Veterinary Science
    • /
    • 제24권5호
    • /
    • pp.71.1-71.12
    • /
    • 2023
  • With the growing interest in companion animals and the rapidly expanding animal healthcare and pharmaceuticals market worldwide. With the advancements in RNAsequencing (RNA-seq) technology, it has become a valuable tool for understanding biological processes in companion animals and has multiple applications in animal healthcare. Historically, veterinary diagnoses and treatments relied solely on clinical symptoms and drugs used in human diseases. However, RNA-seq has emerged as an effective technology for studying companion animals, providing insights into their genetic information. The sequencing technology has revealed that not only messenger RNAs (mRNAs) but also noncoding RNAs (ncRNAs) such as long ncRNAs and microRNAs can serve as biomarkers. Based on the examination of RNA-seq applications in veterinary medicine, particularly in dogs and cats, this review concludes that RNA-seq has significant potential as a diagnostic and research tool. It has enabled the identification of potential biomarkers for cancer and other diseases in companion animals. Further research and development are required to maximize the utilization of RNA-seq for improved disease diagnosis and therapeutic targeting in companion animals.

Genome-wide identification and analysis of long noncoding RNAs in longissimus muscle tissue from Kazakh cattle and Xinjiang brown cattle

  • Yan, Xiang-Min;Zhang, Zhe;Liu, Jian-Bo;Li, Na;Yang, Guang-Wei;Luo, Dan;Zhang, Yang;Yuan, Bao;Jiang, Hao;Zhang, Jia-Bao
    • Animal Bioscience
    • /
    • 제34권11호
    • /
    • pp.1739-1748
    • /
    • 2021
  • Objective: In recent years, long noncoding RNAs (lncRNAs) have been identified in many species, and some of them have been shown to play important roles in muscle development and myogenesis. However, the differences in lncRNAs between Kazakh cattle and Xinjiang brown cattle remain undefined; therefore, we aimed to confirm whether lncRNAs are differentially expressed in the longissimus dorsi between these two types of cattle and whether differentially expressed lncRNAs regulate muscle differentiation. Methods: We used RNA-seq technology to identify lncRNAs in longissimus muscles from these cattle. The expression of lncRNAs were analyzed using StringTie (1.3.1) in terms of the fragments per kilobase of transcript per million mapped reads values of the encoding genes. The differential expression of the transcripts in the two samples were analyzed using the DESeq R software package. The resulting false discovery rate was controlled by the Benjamini and Hochberg's approach. KOBAS software was utilized to measure the expression of different genes in Kyoto encyclopedia of genes and genomes pathways. We randomly selected eight lncRNA genes and validated them by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Results: We found that 182 lncRNA transcripts, including 102 upregulated and 80 downregulated transcripts, were differentially expressed between Kazakh cattle and Xinjiang brown cattle. The results of RT-qPCR were consistent with the sequencing results. Enrichment analysis and functional annotation of the target genes revealed that the differentially expressed lncRNAs were associated with the mitogen-activated protein kinase, Ras, and phosphatidylinositol 3-kinase (PI3k)/Akt signaling pathways. We also constructed a lncRNA/mRNA coexpression network for the PI3k/Akt signaling pathway. Conclusion: Our study provides insights into cattle muscle-associated lncRNAs and will contribute to a more thorough understanding of the molecular mechanism underlying muscle growth and development in cattle.

MicroRNA-21 Regulates the Invasion and Metastasis in Cholangiocarcinoma and May Be a Potential Biomarker for Cancer Prognosis

  • Huang, Qiang;Liu, Lei;Liu, Chen-Hai;You, Hao;Shao, Feng;Xie, Fang;Lin, Xian-Sheng;Hu, San-Yuan;Zhang, Chuan-Hai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권2호
    • /
    • pp.829-834
    • /
    • 2013
  • Background: MicroRNAs are noncoding RNA molecules that posttranscriptionally regulate gene expression. The aim of this study was to determine the role of microRNA-21 in cholangiocarcinomas and its relationship to cholangiocarcinoma RBE cell capacity for invasion and metastasis. Methods: MicroRNA-21 expression was investigated in 41 cases of cholangiocarcinoma samples by in situ hybridization and real-time PCR. Influence on cholangiocarcinoma cell line invasion and metastasis was analyzed with microRNA-21 transfected cells. In addition, regulation of reversion-inducing-cysteine-rich protein with kazal motifs (RECK) by microRNA-21 was elucidated to identify mechanisms. Results: In situ hybridization and real-time quantitative PCR results for patients with lymph node metastasis or perineural invasion showed significantly high expression of microRNA-21 (P<0.05). There was a dramatic decrease in cholangiocarcinoma cell line invasion and metastasis ability after microRNA-21 knockdown (P<0.05). However, overexpression significantly increased invasion and metastasis (P<0.05). Real-time PCR and Western-blot analysis showed that microRNA-21 could potentially inhibit RECK expression in RBE cells. Survival analysis showed that patients with higher expression levels of microRNA-21 more often had a poor prognosis (P<0.05). Conclusions: MicroRNA-21 may play an important role in cholangiocarcinoma invasion and metastasis, suggesting that MicroRNA-21 should be further evaluated as a biomarker for predicting cholangiocarcinoma prognosis.