• Title/Summary/Keyword: Nonalcoholic fatty liver

Search Result 118, Processing Time 0.019 seconds

Ginseng-plus-Bai-Hu-Tang ameliorates diet-induced obesity, hepatic steatosis, and insulin resistance in mice

  • Lu, Hsu-Feng;Lai, Yu-Heng;Huang, Hsiu-Chen;Lee, I-Jung;Lin, Lie-Chwen;Liu, Hui-Kang;Tien, Hsiao-Hsuan;Huang, Cheng
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.238-246
    • /
    • 2020
  • Background: Dietary fat has been suggested to be the cause of various health issues. Obesity, hypertension, cardiovascular disease, diabetes, dyslipidemia, and kidney disease are known to be associated with a high-fat diet (HFD). Obesity and associated conditions, such as type 2 diabetes mellitus and nonalcoholic fatty liver disease (NAFLD), are currently a worldwide health problem. Few prospective pharmaceutical therapies that directly target NAFLD are available at present. A Traditional Chinese Medicine, ginseng-plus-Bai-Hu-Tang (GBHT), is widely used by diabetic patients to control glucose level or thirst. However, whether it has therapeutic effects on fat-induced hepatic steatosis and metabolic syndrome remains unclear. Methods: This study was conducted to examine the therapeutic effect of GBHT on fat-induced obesity, hepatic steatosis, and insulin resistance in mice. Results: GBHT protected mice against HFD-induced body weight gain, hyperlipidemia, and hyperglycemia compared with mice that were not treated. GBHT inhibited the expansion of adipose tissue and adipocyte hypertrophy. No ectopic fat deposition was found in the livers of HFD mice treated with GBHT. In addition, glucose intolerance and insulin sensitivity in HFD mice was also improved by GBHT. Conclusion: GBHT prevents changes in lipid and carbohydrate metabolism in a HFD mouse model. Our findings provide evidence for the traditional use of GBHT as therapy for the management of metabolic syndrome.

Ginsenoside Rb3 ameliorates podocyte injury under hyperlipidemic conditions via PPARδ- or SIRT6-mediated suppression of inflammation and oxidative stress

  • Heeseung Oh;Wonjun Cho;Seung Yeon Park;A.M. Abd El-Aty;Ji Hoon Jeong;Tae Woo Jung
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.400-407
    • /
    • 2023
  • Background: Rb3 is a ginsenoside with anti-inflammatory properties in many cell types and has been reported to attenuate inflammation-related metabolic diseases such as insulin resistance, nonalcoholic fatty liver disease, and cardiovascular disease. However, the effect of Rb3 on podocyte apoptosis under hyperlipidemic conditions, which contributes to the development of obesity-mediated renal disease, remains unclear. In the current study, we aimed to investigate the effect of Rb3 on podocyte apoptosis in the presence of palmitate and explore its underlying molecular mechanisms. Methods: Human podocytes (CIHP-1 cells) were exposed to Rb3 in the presence of palmitate as a model of hyperlipidemia. Cell viability was assessed by MTT assay. The effects of Rb3 on the expression of various proteins were analyzed by Western blotting. Apoptosis levels were determined by MTT assay, caspase 3 activity assay, and cleaved caspase 3 expression. Results: We found that Rb3 treatment alleviated the impairment of cell viability and increased caspase 3 activity as well as inflammatory markers in palmitate-treated podocytes. Treatment with Rb3 dosedependently increased PPARδ and SIRT6 expression. Knockdown of PPARδ or SIRT6 reduced the effects of Rb3 on apoptosis as well as inflammation and oxidative stress in cultured podocytes. Conclusions: The current results suggest that Rb3 alleviates inflammation and oxidative stress via PPARδ-or SIRT6-mediated signaling, thereby attenuating apoptosis in podocytes in the presence of palmitate. The present study provides Rb3 as an effective strategy for treating obesity-mediated renal injury.

Nutritional Intervention for a Patient With Sleeve Gastrectomy

  • Seonhye Park;Sohye Kim;Soyoun Kim;Ah-Reum Shin;Youngmi Park
    • Clinical Nutrition Research
    • /
    • v.12 no.3
    • /
    • pp.177-183
    • /
    • 2023
  • Bariatric surgery is the most effective treatment for sustained weight reduction, and it can result in substantial improvements in the severity of type 2 diabetes, metabolic syndrome, nonalcoholic fatty liver disease, and quality of life. However, sleeve gastrectomy, a weight loss surgery that removes two-thirds of the stomach, reduces appetite and nutrient absorption, impairing digestion and the absorption of nutrients like iron, vitamin B12, and protein-bound nutrients. This case study aims to demonstrate that patients undergoing sleeve gastrectomy require long-term and periodic monitoring of biochemical data, weight changes, and caloric and protein intake by a professional nutritionist to prevent malnutrition and nutritional deficiencies. In this case study, a 48-year-old woman was diagnosed with morbid obesity, hypertension, sleep apnea syndrome, and chronic gastritis. At initial evaluation, she was 160 cm tall and weighed 89 kg, with a body mass index of 34.8 kg/m2. At 1 postoperative year, she consumed 650 kcal and 25 g of protein per day, the percentage of excess weight loss was 141.1%, and body mass index was 21 kg/m2. Compared to preoperative levels, calcium and folic acid levels did not decrease after 1 postoperative year, but hemoglobin, ferritin, and vitamin B12 levels decreased. In conclusion, when patients experience rapid weight loss after sleeve gastrectomy, follow-up should be frequent and long. Dietary education should be conducted according to digestive symptoms, and oral nutritional supplements, including vitamins and minerals.

Nonalcoholic Fatty Liver Disease in Children with Hypopituitarism (뇌하수체저하증 소아에서 발생한 비알코올성 지방간질환)

  • Yoon, Jung-Min;Ko, Jae-Sung;Seo, Jeong-Kee;Shin, Choong-Ho;Yang, Sei-Won;Moon, Jin-Soo;Yang, Hye-Ran;Chang, Ju-Young
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.13 no.1
    • /
    • pp.51-57
    • /
    • 2010
  • Purpose: It has been reported that children with hypopituitarism have features of metabolic syndrome, including obesity, impaired glucose tolerance, and dyslipidemia. The aim of this study was to investigate the clinical features and liver histology of pediatric non-alcoholic fatty liver disease (NAFLD) associated with hypopituitarism. Methods: We reviewed the clinical data of 11 children diagnosed with NAFLD among patients with hypopituitarism. Results: The mean age at the time of diagnosis of hypopituitarism was 10.4${\pm}$3.2 years, and the mean age at the time of diagnosis of NAFLD was 13.1${\pm}$2.7 years. A craniopharyngioma was the most common cause of pituitary dysfunction. At the time of diagnosis of NAFLD, 9 patients (82%) had a body mass index greater than the 85th percentile, 5 patients (45%) had elevated fasting blood glucose levels, and 9 patients (82%) had hypertriglyceridemia. The mean height SD score was significantly lower at the time of diagnosis of NAFLD than at the time of diagnosis of hypopituitarism. Of the six patients who were biopsied, one had cirrhosis, two had non-alcoholic steatohepatitis (NASH) with bridging fibrosis, two had NASH with mild portal fibrosis, and one had simple steatosis. Conclusion: Children with hypopituitarism are at risk of short stature, obesity, dyslipidemia, and NAFLD. The early diagnosis of NAFLD is important in children with hypopituitarism because advanced fibrosis is common.

SREBP as a Global Regulator for Lipid Metabolism (지질대사 조절에서 SREBP의 역할)

  • Lee, Wonhwa;Seo, Young-kyo
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1233-1243
    • /
    • 2018
  • Sterol regulatory-element binding proteins (SREBPs) are a family of transcription factors that regulate lipid homeostasis and metabolism by controlling the expression of enzymes required for endogenous cholesterol, fatty acid (FA), triacylglycerol, and phospholipid synthesis. The three SREBPs are encoded by two different genes. The SREBP1 gene gives rise to SREBP-1a and SREBP-1c, which are derived from utilization of alternate promoters that yield transcripts in which distinct first exons are spliced to a common second exon. SREBP-2 is derived from a separate gene. Additionally, SREBPs are implicated in numerous pathogenic processes, such as endoplasmic reticulum stress, inflammation, autophagy, and apoptosis. They also contribute to obesity, dyslipidemia, diabetes mellitus, and nonalcoholic fatty liver diseases. Genome-wide analyses have revealed that these versatile transcription factors act as important nodes of biological signaling networks. Changes in cell metabolism and growth are reciprocally linked through SREBPs. Anabolic and growth signaling pathways branch off and connect to multiple steps of SREBP activation and form complex regulatory networks. SREBPs are activated through the PI3K-Akt-mTOR pathway in these processes, but the molecular mechanism remains to be understood. This review aims to provide a comprehensive understanding of the role of SREBPs in physiology and pathophysiology at the cell, organ, and organism levels.

The Comparative Effects of Yugmijihwangtang in Donguibogam and Experiment Research Results -Focusing on the Korean Medicine and Traditional Chinese Medicine- (육미지황탕 효능의 동의보감과 실험연구결과의 비교고찰 -한의학과 중의학을 중심으로-)

  • Han, Yoochang;Kim, Myung Dong;Lee, Sundong
    • Herbal Formula Science
    • /
    • v.25 no.2
    • /
    • pp.223-251
    • /
    • 2017
  • Objectives : A lot of experiment results of Yugmijihwangtang(YM) are reported in various kinds of journals. Many of them report on the new effects that are not recorded in the traditional medical texts. So it is necessary to take it into consideration that newly reported effects could be of help to clinical practice, because this process of comparison of Donguibogam and scientific experiment results will have basis to lead into the evidence based medicine. Methods : We compared the effects of in Donguibogam and the experiment results of YM. Results : The effects of YM in Donguibogam are to replenish essence and marrow, and to treat red wen, fatigue, treat hypouresis, urinary sediment, urinary urgency, hematuria, hydrocephalus, speech and movement retardation, yin-deficiency, diabetes mellitus, nonalcoholic fatty liver, melanoma, disability to see near and far sight, tinnitus, hearing loss, alopecia, angiogenesis, cough, cough at night, trachyphonia, and, infantile convulsion. The experiment results of YM since 2000 in both Korea and China are to inhibit atopic dermatitis, renal interstitial fibrosis, anti-oxidant, emphysema, stress, glomerulosclerosis, diabetic nephropathy, chronic glomerulonephritis, hemorrhage, plantar sweating, dermal aging, kidney aging, bone loss, breast cancer, pathological myocardial cell, primary liver cancer, thrombosis, osteoporosis, intrauterine growth retardation, chronic renal failure, IgA nepropathy, slow cerebral development, and hippocampal tissue lesions on the one hand, and to help bone formation, renin-angiotensin- aldosterone system, cerebral recovery, cognitive function and expression, osteoblast proliferation and differentiation, learning and memory, cold-tolerance and oxygen deficit-tolerance and anti-fatigue, endometrial formation, humoral and cell-mediated immunity, immune regulation effect, Hypothalamus-Pituitary-Ovary Axis, and spermatogenesis, on the other hand. Conclusion : When we compared the effects of YM with the experiment results of YM, there existed a considerable gap between them. So, from now on, it is expected that a great effort and consideration are needed to solve these gaps from an academic and clinical point of view.

Severe choline deficiency induces alternative splicing aberrance in optimized duck primary hepatocyte cultures

  • Zhao, Lulu;Cai, Hongying;Wu, Yongbao;Tian, Changfu;Wen, Zhiguo;Yang, Peilong
    • Animal Bioscience
    • /
    • v.35 no.11
    • /
    • pp.1787-1799
    • /
    • 2022
  • Objective: Choline deficiency, one main trigger for nonalcoholic fatty liver disease (NAFLD), is closely related to lipid metabolism disorder. Previous study in a choline-deficient model has largely focused on gene expression rather than gene structure, especially sparse are studies regarding to alternative splicing (AS). In modern life science research, primary hepatocytes culture technology facilitates such studies, which can accurately imitate liver activity in vitro and show unique superiority. Whereas limitations to traditional hepatocytes culture technology exist in terms of efficiency and operability. This study pursued an optimization culture method for duck primary hepatocytes to explore AS in choline-deficient model. Methods: We performed an optimization culture method for duck primary hepatocytes with multi-step digestion procedure from Pekin duck embryos. Subsequently a NAFLD model was constructed with choline-free medium. RNA-seq and further analysis by rMATS were performed to identify AS events alterations in choline-deficency duck primary hepatocytes. Results: The results showed E13 (embryonic day 13) to E15 is suitable to obtain hepatocytes, and the viability reached over 95% by trypan blue exclusion assay. Primary hepatocyte retained their biological function as well identified by Periodic Acid-Schiff staining method and Glucose-6-phosphate dehydrogenase activity assay, respectively. Meanwhile, genes of alb and afp and specific protein of albumin were detected to verify cultured hepatocytes. Immunofluorescence was used to evaluate purity of hepatocytes, presenting up to 90%. On this base, choline-deficient model was constructed and displayed significantly increase of intracellular triglyceride and cholesterol as reported previously. Intriguingly, our data suggested that AS events in choline-deficient model were implicated in pivotal biological processes as an aberrant transcriptional regulator, of which 16 genes were involved in lipid metabolism and highly enriched in glycerophospholipid metabolism. Conclusion: An effective and rapid protocol for obtaining duck primary hepatocytes was established, by which our findings manifested choline deficiency could induce the accumulation of lipid and result in aberrant AS events in hepatocytes, providing a novel insight into various AS in the metabolism role of choline.

Effects of Lonicera caerulea extract on adipocyte differentiation and adipogenesis in 3T3-L1 cells and mouse adipose-derived stem cells (MADSCs) (댕댕이나무 열매 추출물이 지방전구세포와 마우스 지방유래줄기세포의 분화 및 지방 생성 억제에 미치는 영향)

  • Park, Miey;Lee, Changho;Lee, Hae-Jeung
    • Journal of Nutrition and Health
    • /
    • v.52 no.1
    • /
    • pp.17-25
    • /
    • 2019
  • Purpose: Obesity is a major health problem of global significance because it is clearly associated with an increased risk of health problems, such as nonalcoholic fatty liver disease (NAFLD), diabetes, cardiovascular diseases, and cancer. Lonicera caerulea (LC) originates from high mountains or wet areas and has been used as a traditional medicine in northern Russia, China, and Japan. LC contains a range of bioactive constituents, such as vitamins, minerals, and polyphenols. This study examined the anti-obesity effects of LC during differentiation in preadipocytes. Methods: The cell viability assay was performed after the differentiation of 3T3-L1 cells for 7 days. Oil Red O staining was used to visualize the changes in lipid droplets in 3T3-L1 cells and mouse adipose-derived stem cells (MADSCs). The mRNA expression of obesity-related genes was determined by quantitative real-time PCR. Results: According to the results of Oil Red O staining, the lipid levels and size of lipid droplets in the adipocytes were reduced and the LC extract (LCE, 0.25-1 mg/mL) markedly inhibited adipogenesis in a dose-dependent manner. The treatment of LCE also decreased the mRNA expression of peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$), CCAAT/enhancer binding protein-${\alpha}$ ($C/EBP{\alpha}$), and sterol regulatory element binding protein 1 (SREBP1) in 3T3-L1 cells. Western blot analysis showed that the $PPAR{\gamma}$, $C/EBP{\alpha}$, and SREBP1 protein levels in both 3T3-L1 and MADSC were reduced in a dose-dependent manner. Conclusion: These results suggest that LCE can inhibit adipogenic differentiation through the regulation of adipogenesis-related markers.