• Title/Summary/Keyword: Non-thermal dielectric barrier discharge plasma

Search Result 31, Processing Time 0.035 seconds

A Study on NOx Removal Efficiency Depending on Electrode Configurations of Silent Discharges (무성방전 플라즈마 전극구조에 대한 질소산화물 제거효율 연구)

  • Hyung-Taek Kim;Young-Sik Chung;Myung-Whan Whang;Elena. A. Filimonova
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.3
    • /
    • pp.112-117
    • /
    • 2002
  • A comparative investigation of an experimental and a simulation of chemical kinetics for NOx removal from silent(dielectric-barrier) discharges is presented. Several types of dielectric-barrier discharges were implemented depending upon the configuration of electrodes. The simulation was based on an approximate mathematical model for plasma cleaning of waste gas. The influence of non-uniform distributions of species due to the production of primary active particles in the streamer channel was taken into account. A comparison of observed experimental to the calculated removal efficiency of NOx showed acceptable agreement.

Removal of Volatile Organic Compounds Using a Plasma Assisted Biotrickling System (플라즈마를 결합한 바이오 트리클링 시스템에 의한 휘발성 유기물질의 제거)

  • Kim, Hak-Joon;Han, Bang-Woo;Kim, Yong-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.6
    • /
    • pp.727-733
    • /
    • 2007
  • In this study, a newly developed biotrickling system, combined with a non-thermal plasma reactor, was investigated to effectively treat gaseous contaminants such as VOCs (Volatile Organic Compounds). Three kinds of non-thermal plasmas (NTPs) such as a rod type dielectric barrier discharge (DBD) plasma, a packed bead type DBD plasma and a gliding arc (GA) plasma, were tested and compared in terms of power consumption. The rod type DBD plasma was selected as one for integration with biotrickling system due to its relatively high VOC removal efficiency, low power consumption and low pressure drop. Toluene and xylene as representatives of VOCs were used as test gases. The experiment results showed that the efficiency of biotrickling system was especially very low at the high gas concentration and high flow rate and the removal efficiencies of VOCs were considerably enhanced in the biotrickling system, when the DBD plasma was worked in front of that even at the high gas concentration and high flow rate.

Micro-gap DBD Plasma and Its Applications

  • Zhang, Zhitao;Liu, Cheng;Bai, Mindi;Yang, Bo;Mao, Chengqi
    • Journal of the Speleological Society of Korea
    • /
    • no.76
    • /
    • pp.37-42
    • /
    • 2006
  • The Dielectric Barrier Discharge (DBD) is a nonequilibrium gas discharge that is generated in the space between two electrodes, which are separated by an insulating dielectric layer. The dielectric layer can be put on either of the two electrodes or be inserted in the space between two electrodes. If an AC or pulse high voltage is applied to the electrodes that is operated at applied frequency from 50Hz to several MHz and applied voltages from a few to a few tens of kilovolts rms, the breakdown can occur in working gas, resulting in large numbers of micro-discharges across the gap, the gas discharge is the so called DBD. Compared with most other means for nonequilibrium discharges, the main advantage of the DBD is that active species for chemical reaction can be produced at low temperature and atmospheric pressure without the vacuum set up, it also presents many unique physical and chemical process including light, heat, sound and electricity. This has led to a number of important applications such as ozone synthesizing, UV lamp house, CO2 lasers, et al. In recent years, due to its potential applications in plasma chemistry, semiconductor etching, pollution control, nanometer material and large area flat plasma display panels, DBD has received intensive attention from many researchers and is becoming a hot topic in the field of non-thermal plasma.

Sterilization and quality variation of dried red pepper by atmospheric pressure dielectric barrier discharge plasma (대기압 유전체장벽방전 플라즈마에 의한 건고추의 식중독균 살균효과 및 품질변화)

  • Song, Yoon Seok;Park, Yu Ri;Ryu, Seung Min;Jeon, Hyeong Won;Eom, Sang Heum;Lee, Seung Je
    • Food Science and Preservation
    • /
    • v.23 no.7
    • /
    • pp.960-966
    • /
    • 2016
  • This study was conducted to explore the potential for use of atmospheric pressure dielectric barrier discharge plasma (atmospheric pressure DBD plasma) as a non-thermal sterilization technology for microorganisms in dried red pepper. The effects of key parameters such as power, exposure time and distance on the sterilization efficiency and the quality of red dried pepper by the atmospheric pressure DBD plasma treatment were investigated. The results revealed that the plasma treatment was very effective for sterilization of Staphylococcus aureus, with 15 min of treatment at 1.0 kW and 20 mm sterilizing 82.6% of the S. aureus. Increasing the power or exposure time and decreasing the exposure distance led to improved sterilization efficiency. The atmospheric pressure DBD plasma treatment showed no effect on the ASTA (American spice trade association) value or hardness of dried red pepper. Furthermore, no effects of atmospheric pressure DBD plasma treatment were observed on the sensory properties of dried red pepper. To assess the storage stability, the dried red pepper was treated with atmospheric pressure DBD plasma (1.5 kW power, 15 min exposure time and 10 mm exposure distance), then stored for 12 weeks at $25^{\circ}C$. Consequently, the ASTA value, hardness and capsaicin concentration of dried red pepper were maintained.

Characteristics of Toluene Destruction by Non-thermal Plasma in Packed with Catalyst Reactor (촉매가 충진된 플라즈마 반응기에서의 Toluene 제거특성)

  • 한소영;송영훈;차민석;김석준;최경일;신동준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.1
    • /
    • pp.51-58
    • /
    • 2002
  • Destruction process of toluene using a wire-cylindrical BBD (Dielectric Barrier Discharge) reactor packed with catalysts was investigated to characterize the synergetic effects of non-thermal plasma and catalyst process. The catalysts used in the present study were ${\gamma}$-Al$_2$BO$_3$ and Pt/${\gamma}$-Al$_2$O$_3$. Under the numerous test conditions, specific energy density (SED (J/L)) and the conversion of toluene, defined as (1 -[C$_{f}$]/[C$_{i}$]), were measured. The test results showed that toluene decomposition efficiency followed the pseudo-first order in the case of plasma only process. The pseudo-first order process, however, was modified to pseudo-zeroth order reaction in the case of catalyst-assisted plasma process. This modification of the reaction order was verified based on a simple kinetic model proposed in the present study. Owing to the modification of reaction order, which resulted from the catalytic process, the specific energy to achieve the high removal efficiencies, i.e. 80~90%, was reduced significantly.y.y.

A Study on the Double Dielectric Barrier Discharge for $NO_x$ reduction (이중 베리어 방전 반응기를 사용한 $NO_x$ 제거에 관한 연구)

  • Kim, Dong-Ook;Kim, Eung-Bok;Chung, Young-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2182-2185
    • /
    • 1999
  • In this experimental study we propose the double dielectric barrier discharge(DDBD) reactor to produce as high an electric field as possible. DDBD reactor is designed to remove $NO_x$ at atmospheric pressures from the moving pollution source such as diesel automobile DDBD reactor consisted of two cylinder glass tubes arranged so that the gas flow was directed between the two tubes. Inside of the inner tube was filled with small metal beads and outside of the inner tube was wounded with stainless wire to form the electrode. The outer tube was surrounded by an aluminum foil In this reactor there are three electrodes, i.e. metal bead(C), helical wire(I) and aluminum foil(0). By using DDBD reactor we will report some interesting results of treatment of the gas which is the dilute mixtures of NO in N2. And then we compared thee results with the results of cylinder-wire(CW) which is one of popularly used reactor in non-thermal plasma applications.

  • PDF

Bactericidal Efficacy of Non-thermal DBD Plasma on Staphylococcus aureus and Escherichia coli (비열 유전체장벽방전 플라즈마의 포도상구균 및 대장균 살균효과)

  • Kim, Keyyoung;Paik, Namwon;Kim, Yonghee;Yoo, Kwanho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.1
    • /
    • pp.61-79
    • /
    • 2018
  • Objectives: The objective of this study was to examine the effect of non-thermal dielectric barrier discharge(DBD) plasma on decontamination of Staphylococcus aureus(S. aureus) and Escherichia coli(E. coli) as common pathogens. Methods: This experiment was carried out in a chamber($0.64m^3$)designed by the authors. The plasma was continuously generated by a non-thermal DBD plasma generator(Model TB-300, Shinyoung Air tech, Korea). Suspensions of S. aureus and E. coli of 0.5 McFarland standard($1.5{\times}10^8CFU/mL$) were prepared using a Densi-Check photometer(bio $M{\acute{e}}rieux$, France). The suspensions were diluted1:1000 in sterile PBS solutions(approximately$10^{4-5}CFU/mL$) and inoculated on tryptic soy agar(TSA) in Petri dishes. The Petri dishes(80mm internal diameter)were exposed to the non -thermal DBD plasma in the chamber. Results: The results showed that 95% of S. aureus colonies were killed after a six-hour exposure to the DBD plasma. In the case of E. coli, it took two hours to kill 100% of the colonies. The gram-negative E. coli had a greater reduction than the gram-positive S. aureus. This difference may be due to the structure of their cell membranes. The thickness of gram-positive bacteria is greater than that of gram-negative bacteria. The S. aureus is more resistant to DBD plasma exposures than is E. coli. It should be noted that average concentrations of ozone, a byproduct of the DBD plasma generator, were monitored throughout the experiment and the results were well below the criteria, 50 ppb, recommended by the Korean Ministry of the Environment. Thus, non-thermal DBD plasma is deemed safe for use in hospital and public facilities. Conclusions: There was evidence that non-thermal DBD plasma can effectively kill S. aureus and E. coli. The results indicate that DBD plasma technology can greatly contribute to the control of infections in hospitals and other public and private facilities.

Influence of DBD Plasma Exposure on Normal and Cancer Cells Activity

  • Panngom, Kamonporn;Baik, Ku-Youn;Ryu, Young-Huo;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.172-172
    • /
    • 2012
  • Non-thermal plasma has attracted medical researchers, since they showed higher apoptosis rate in cancer cells than normal cells. However, it is hard to conclude general cancer cell specific effect because comparison between normal and cancer cell activities after plasma treatment have not been reported yet. This research proposes a comparison of Dielectric Barrier Discharge (DBD) plasma effect on three normal cells lines and three cancer cells lines. We measured cell number, mitochondria activity (MTS assay) and amount of hydrogen peroxide (H2O2) for three days. The results show that the number of cancer cells decreased more than normal cells following of exposure time. On the other hand, mitochondria activities and amounts of H2O2 increased following of exposure time. In addition, we found that DBD plasma exposure on cell suspension in media and media only illustrated no difference in mitochondria activity, H2O2 quantity, and cell number. Thus, we can confirm higher apoptosis rate in cancer cells which is related to the reactive oxygen species (ROS) generated by DBD plasma. The related molecular mechanisms were investigated further.

  • PDF

Preferential Killing of Human Lung Cancer Cell Lines with Mitochondrial Dysfunction by Non-Thermal Dbd Plasma

  • Panngom, Kamonporn;Baik, Ku Youn;Nam, Min-Kyung;Rhim, Hyang-Shuk;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.199-199
    • /
    • 2013
  • The distinctive cellular and mitochondrial dysfunctions of a human epithelial lung cancer cell line (H460) from a human lung fibroblastic normal cell line (MRC5) have been studied by dielectric barrier discharge (DBD) plasma treatment. The DBD plasma device have generated large amount of H2O2 and NOx in culture media which is dependent on plasma exposure time. It is found that the cell number of lung cancer cell H460 has been reduced more than the lung normal cell MRC5 as being increased exposure and incubation time. Also these both cell lines have showed mitochondria fragmentation under 5 minutes' plasma exposure, which is a clue of apoptosis. It is noted in this study that AnnexinV staining has showed not only early apoptosis, but also late apoptosis in lung cancer cell H460. Mitochondria enzyme activity and ATP generation have been also much reduced in lung cancer cell H460. Their mitochondrial membrane potential (${\Delta}{\psi}m$) has been found to be reduced in magnitude and shifted to the induced-potential level of cccp, while MRC5 mitochondrial membrane potential has been shifted slightly to that. These distinctively selective responses of lung cancer cell H460 from lung normal cell MRC5 gives us possibility of applying plasma to cancer therapy.

  • PDF

Decomposition of Ethylene using a Hybrid Catalyst-packed Bed Plasma Reactor System (플라즈마 충진 촉매 시스템을 이용한 에틸렌 저감 연구)

  • Lee, Sang Baek;Jo, Jin-Oh;Jang, Dong Lyong;Mok, Young Sun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.6
    • /
    • pp.577-585
    • /
    • 2014
  • A series of experiments using atmospheric-pressure non-thermal plasma coupled with transition metal catalysts were performed to remove ethylene from agricultural storage facilities. The non-thermal plasma was created by dielectric barrier discharge, which was in direct contact with the catalyst pellets. The transition metals such as Ag and $V_2O_5$ were supported on ${\gamma}-Al_2O_3$. The effect of catalyst type, specific input energy (SIE) and oxygen content on the removal of ethylene was examined to understand the behavior of the hybrid plasma-catalytic reactor system. With the other parameters kept constant, the plasma-catalytic activity for the removal of ethylene was in order of $V_2O_5/{\gamma}-Al_2O_3$ > $Ag/{\gamma}-Al_2O_3$ > ${\gamma}-Al_2O_3$ from high to low. Interestingly, the rate of plasma-catalytic ozone generation was in order of $V_2O_5/{\gamma}-Al_2O_3$ > ${\gamma}-Al_2O_3$ > $Ag/{\gamma}-Al_2O_3$, implying that the catalyst activation mechanisms by plasma are different for different catalysts. The results obtained by varying the oxygen content indicated that nitrogen-derived reactive species dominated the removal of ethylene under oxygen-lean condition, while ozone and oxygen atoms were mainly involved in the removal under oxygen-rich condition. When the plasma was coupled with $V_2O_5/{\gamma}-Al_2O_3$, nearly complete removal of ethylene was achieved at oxygen contents higher than 5% by volume (inlet ethylene: 250 ppm; gas flow rate: $1.0Lmin^{-1}$; SIE: ${\sim}355JL^{-1}$).