• Title/Summary/Keyword: Non-thermal Plasma

검색결과 231건 처리시간 0.023초

수중 비열 유전체장벽 방전 플라즈마를 이용한 양식어류의 병원성세균 3종 및 Tetracycline계 항생제 제거 (Remove of Three Pathogenic Bacteria in Cultured Fish and Tetracycline Antibiotics Using Underwater Non-Thermal Dielectric Barrier Discharge Plasma)

  • 조규석;박종호
    • 한국수산과학회지
    • /
    • 제55권6호
    • /
    • pp.910-916
    • /
    • 2022
  • The purpose of this study is to evaluate the effect of underwater non-thermal dielectric barrier discharge plasma (DBD plasma) on the sterilization of three types of pathogenic bacteria that cause diseases in freshwater fish and the reduction of a tetracycline antibiotics. This experiment was conducted in the DBD plasma generator, and the voltages used to generate plasma were 11.6 kV and 23.1 kV. The measurement intervals were 0, 1, 5, 10 and 15 min. As a result of DBD plasma treatment, Aeromonas hydrophila, Edwardsiella tarda and Pseudomonas fluorescens were removed 93-99% after 5 min at 23.1 kV, and the tetracycline antibiotics were reduced 70-95% after 15 min at 23.1 kV. In this study, as a result of treating the effluent with DBD plasma at a fish farm where the medicinal bath was conducted with oxytetracycline-HCl (OTC-HCl) products, OTC-HCl decreased by 62% after 10 min at 23.1 kV.

평판형 유전체 장벽 방전 반응기에서 충진물질에 따른 아세토나이트릴의 분해 특성 (Decomposition of Acetonitrile Using a Planar Type Dielectric Barrier Discharge Reactor Packed with Adsorption and Catalyst Materials)

  • 김관태;송영훈;김석준
    • 한국대기환경학회지
    • /
    • 제19권2호
    • /
    • pp.157-165
    • /
    • 2003
  • A combined process of non-thermal plasma and catalytic technique has been investigated to treat $CH_3$CN gas in the atmosphere. A planar type dielectric barrier discharge (DBD) reactor has been used to generate the non-thermal plasma that produces various chemically active species, such as O, N, OH, $O_3$, ion, electrons, etc. Several different types of the beads. which are Molecular Sieve (MS) 5A, MS 13X, Pt/alumina beads, are packed into the DBD reactor, and have been tested to characterize the effects of adsorption and catalytic process on treating the $CH_3$CN gas in the DBD reactor. The test results showed that the operating power consumption and the amounts of the by-products of the non-thermal plasma process can be reduced by the assistance of the adsorption and catalytic process.

저온 플라즈마 및 암모니아 선택적 환원공정을 활용한 저온 탈질공정의 특성(II) (Characteristics of Low Temperature De-NOx Process with Non-thermal Plasma and NH3 Selective Catalytic Reduction (II))

  • 이재옥;송영훈
    • 공업화학
    • /
    • 제17권4호
    • /
    • pp.414-419
    • /
    • 2006
  • 연소 배기가스 중의 수분, 탄화수소 및 CO가 저온 플라즈마 및 $NH_{3}$ SCR (Selective Catalytic Reduction)공정이 복합된 탈질공정에 미치는 영향에 대한 연구가 수행되었다. 실험결과 일반적인 SCR 반응에 비해 매우 빠른 반응속도를 갖는 fast SCR 반응은 $150{\sim}200^{\circ}C$의 저온조건에서 탈질율의 상승을 가져다주지만, 처리가스 중에 탄화수소가 있는 경우 fast SCR 반응의 역할이 상당히 감소되는 것을 확인할 수 있었다. 이는 저온 플라즈마 반응기에서 부분산화반응을 통해 탄화수소 중 일부가 알데히드로 전환되며, 알데히드는 fast SCR 반응에 있어 중요한 변수인 $NO_{2}/NO_{x}$ 비율에 영향을 주기 때문인 것으로 설명되었다. 한편, 수분 및 CO가 fast SCR 반응에 미치는 영향은 탄화수소에 비해 상대적으로 적음을 확인할 수 있었다.

THERMAL PLASMA SYNTHESIS OF NANO-SIZED POWDERS

  • Seo, Jun-Ho;Hong, Bong-Guen
    • Nuclear Engineering and Technology
    • /
    • 제44권1호
    • /
    • pp.9-20
    • /
    • 2012
  • A brief review on the thermal plasma synthesis of nano-sized powders is presented according to the application materials, such as, metals, ceramics, glasses, carbonaceous materials and other functional composites, such as, supported metal catalyst and core-shell structured nano materials. As widely adopted plasma sources available for thermal plasma synthesis of nanosized powders, three kinds of plasma torches, such as transferred and non-transferred DC and RF plasma torches, are introduced with the main features of each torch system. In the basis of the described torch features and the properties of suggested materials, application results including synthesis mechanism are reviewed in this paper.

Interactions of non-thermal bioplasma with cancer, and immune cells

  • Kaushik, Nagendra Kumar;Kaushik, Neha;Choi, Eun Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.66.2-66.2
    • /
    • 2015
  • There is the urgent need of new human health care's technology against cancers or tumors based on plasma electronics, medicine and biology. Main target of our study is to enhance efficacy and selectivity of plasma on cancer cells with metabolic modifiers and by inducing immune-modulations. We have evaluated the combination effect of plasma with metabolic modifiers (2-DG) on various solid and liquid cancers. Our findings suggest that 2-DG enhances the efficacy and selectivity of plasma and induces apoptosis in blood cancer cells through glucose deprivation. Finally, we conclude that 2-DG with non-thermal plasma may be used as a combination treatment against cancer cells. Our work also comprises plasma induced activation of immune cells; which find applications for curing various kinds of resistant tumors and other dreadful diseases. Plasma significantly activates immune cells which increases cell death in solid tumors in co-culture conditions.

  • PDF

서브마이크로 펄스 전압파형을 이용한 대기압 저온 마이크로 플라즈마 소스 개발 (The Development of Non-thermal Micro Plasma Source Under Atmospheric Pressure by Means of Submicrosecond Pulse Voltage Waveforms)

  • 최준영;이호준;김동현;이해준;박정후
    • 전기학회논문지
    • /
    • 제56권10호
    • /
    • pp.1802-1806
    • /
    • 2007
  • Nowadays, many configurations and applications of small atmospheric plasma source have been investigated with growing interest, as it provides the bacteria inactivation, the surface modification and removal of unwanted small regions, and so on. In this paper, the non-thermal micro plasma source under atmospheric pressure by means of submicrosecond pulse voltage waveforms is suggested. Plasma operates in helium is appears as a small (sub-mm) glow at the tip of a plasma gun. Electrical measurements show that the plasma source operates at low voltage (about 500V) and the power consumption is about 1W at 25kHz. Moreover, the emission spectrum shows the relatively higher emission intensity of oxygen particles than those of helium and nitrogen.

스파크 점화기관 냉간 시동시 플라즈마 광촉매 복합장치에 의한 탄화수소 화합물 저감에 관한 실험적 연구 (The Study of the Effects of Nonthermal Plasma-Photocatalyst combined Reactor on Hydrocarbon Decomposition and Reduction during Cold Start and Warm-up in a SI Engine)

  • 이택헌;전광민;전배혁;신영기
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제23회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.169-178
    • /
    • 2001
  • Among the recent research ideas to reduce hydrocarbon emissions emitted from SI engines till light-off of catalyst since cold start are those exploiting non-thermal plasma technique and photo-catalyst that draws recent attention by virtue of its successful application to practical use to clean up the atmosphere using the feature of its relative independence on temperature. Based on the previous research results obtained with model exhaust gases using an experimental emissions reduction system that utilizes the non-thermal plasma and photo-catalyst technique, further investigation was conducted on a production N/A 1.5 liter DOHC engine during cold start to warm-up. For the effects of non-thermal plasma-photocatalyst combined reactor, 10% concentration reduction was achieved with the fuel component paraffins, and the large increase in non-fuel paraffinic components and acetylene concentrations were similar to those of base condition. However the absolute value was locally a bit higher than those of base condition since the products was made from the dissociation and decomposition of highly branched paraffins by plasma-photocatalyst reactor. Olefinic components were highly decomposed by about 75%, due to these excellent decompositions of olefins which have relatively high MIR values, and the SR value was 1.87 that is 30% reduction from that of base condition, then, the photochemical reactivity was lowered.

  • PDF

Glidarc 워터젯 플라즈마를 이용한 톨루엔 분해 특성 (Decomposition Characterist of Toluene Using a Glidarc Water-jet Plasma)

  • 김성천;전영남
    • 한국대기환경학회지
    • /
    • 제24권3호
    • /
    • pp.329-335
    • /
    • 2008
  • Volatile organic compounds emitted to the atmosphere can cause adverse effects on human health and participate in photochemical smog formation reactions. The destruction of a series of VOCs has been carried out by non-thermal plasma in other researches. And the characteristic of non-thermal plasma was operated at atmospheric pressure and low temperature. A new type non-thermal plasma reactor was investigated combined Glidarc plasma with water jet in this research. Also, it was found that the water-jet had an significant effect on the toluene removal efficiency. But too much water content does not favor toluene decomposition by decreasing of reaction temperature. The input toluene concentration, gas flow rate, water flow rate and specific energy input were used as experiment variables. The toluene removal efficiency, energy efficiency and specific energy input were 75.3%, 146.6 g/kWh and $1.12kWh/m^3$ at a water flow rate of 100 mL/min.

비이송식 플라즈마 토치 구조에 따른 열 플라즈마 특성 시험 (An Experimental Analysis on the Thermal Plasma Characteristics to the Geometry in Non-Transferred Torch)

  • 정안목;전의식
    • 반도체디스플레이기술학회지
    • /
    • 제8권4호
    • /
    • pp.89-94
    • /
    • 2009
  • The influence on a stability of thermal plasma has been investigated in an electrode structure of non-transferred plasma torch. The variations of dynamic characteristic of the arc voltage was analyzed and compared in terms of voltage character and nozzle types for both the step-shaped nozzles and magnetic-approved cylindrical nozzle. From the experimental results, an electrode gap, flow rate of arc gas, and currents are considered as major operational parameters. As conclusion, it was assured that a torch with step-shaped nozzles of magnetic-approved type produce the stable plasma jet.

  • PDF

DC 저온플라즈마를 이용한 디젤엔진 유해 배기가스 저감에 관한 실험적 연구 (The Experimental Study on the Removal of Diesel Engine Pollutant Emissions Using DC Non-Thermal-Plasma(NTP))

  • 채재우;황재원;정지용;한정희;황화자;김석
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.35-42
    • /
    • 2001
  • The diesel engine exhaust gas is know as one of the causes to produce photochemical smog, which causes damage on environmental. However, due to the high thermal efficiency and low carbon dioxide emission, the usage of a diesel engine is prevailed. In this study, the DC non-thermal plasma technology used to the particulate matter (PM) aftertreatment. The exhaust gas characteristics and energy density were investigated on the dynamometer test bed and chassis dynamometer with CVS-75 mode in a passenger diesel car. It was reported that the smoke removal efficiency has around the 70% in the dynamometer test with 80W energy consumption and the PM removal efficiency has the 68% in the real car test. The NOx also reduced the 20% according to electrode type respectively. Considering these results, plasma technology is one of the ways to simultaneously removing method the particulate matter (PM) and NOx.

  • PDF