• Title/Summary/Keyword: Non-specific RNA

Search Result 203, Processing Time 0.021 seconds

Long non-coding RNA: its evolutionary relics and biological implications in mammals: a review

  • Dhanoa, Jasdeep Kaur;Sethi, Ram Saran;Verma, Ramneek;Arora, Jaspreet Singh;Mukhopadhyay, Chandra Sekhar
    • Journal of Animal Science and Technology
    • /
    • v.60 no.10
    • /
    • pp.25.1-25.10
    • /
    • 2018
  • The central dogma of gene expression propounds that DNA is transcribed to mRNA and finally gets translated into protein. Only 2-3% of the genomic DNA is transcribed to protein-coding mRNA. Interestingly, only a further minuscule part of genomic DNA encodes for long non-coding RNAs (lncRNAs) which are characteristically more than 200 nucleotides long and can be transcribed from both protein-coding (e.g. H19 and TUG1) as well as non-coding DNA by RNA polymerase II. The lncRNAs do not have open reading frames (with some exceptions), 3`-untranslated regions (3'-UTRs) and necessarily these RNAs lack any translation-termination regions, however, these can be spliced, capped and polyadenylated as mRNA molecules. The flexibility of lncRNAs confers them specific 3D-conformations that eventually enable the lncRNAs to interact with proteins, DNA or other RNA molecules via base pairing or by forming networks. The lncRNAs play a major role in gene regulation, cell differentiation, cancer cell invasion and metastasis and chromatin remodeling. Deregulation of lncRNA is also responsible for numerous diseases in mammals. Various studies have revealed their significance as biomarkers for prognosis and diagnosis of cancer. The aim of this review is to overview the salient features, evolution, biogenesis and biological importance of these molecules in the mammalian system.

MiRNA Molecular Profiles in Human Medical Conditions: Connecting Lung Cancer and Lung Development Phenomena

  • Aghanoori, Mohamad-Reza;Mirzaei, Behnaz;Tavallaei, Mahmood
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9557-9565
    • /
    • 2014
  • MiRNAs are endogenous, single stranded ~22-nucleotide non-coding RNAs (ncRNAs) which are transcribed by RNA polymerase II and mediate negative post-transcriptional gene regulation through binding to 3'untranslated regions (UTR), possibly open reading frames (ORFs) or 5'UTRs of target mRNAs. MiRNAs are involved in the normal physiology of eukaryotic cells, so dysregulation may be associated with diseases like cancer, and neurodegenerative, heart and other disorders. Among all cancers, lung cancer, with high incidence and mortality worldwide, is classified into two main groups: non-small cell lung cancer and small cell lung cancer. Recent promising studies suggest that gene expression profiles and miRNA signatures could be a useful step in a noninvasive, low-cost and repeatable screening process of lung cancer. Similarly, every stage of lung development during fetal life is associated with specific miRNAs. Since lung development and lung cancer phenomena share the same physiological, biological and molecular processes like cell proliferation, development and shared mRNA or expression regulation pathways, and according to data adopted from various studies, they may have partially shared miRNA signature. Thus, focusing on lung cancer in relation to lung development in miRNA studies might provide clues for lung cancer diagnosis and prognosis.

CRISPR as a strong gene editing tool

  • Shen, Shengfu;Loh, Tiing Jen;Shen, Hongling;Zheng, Xuexiu;Shen, Haihong
    • BMB Reports
    • /
    • v.50 no.1
    • /
    • pp.20-24
    • /
    • 2017
  • Clustered regularly-interspaced short palindromic repeats (CRISPR) is a new and effective genetic editing tool. CRISPR was initially found in bacteria to protect it from virus invasions. In the first step, specific DNA strands of virus are identified by guide RNA that is composed of crRNA and tracrRNA. Then RNAse III is required for producing crRNA from pre-crRNA. In The second step, a crRNA:tracrRNA:Cas9 complex guides RNase III to cleave target DNA. After cleavage of DNA by CRISPR-Cas9, DNA can be fixed by Non-Homologous End Joining (NHEJ) and Homology Directed Repair (HDR). Whereas NHEJ is simple and random, HDR is much more complex and accurate. Gene editing by CRISPR is able to be applied to various biological field such as agriculture and treating genetic diseases in human.

Identification of Prostate Cancer LncRNAs by RNA-Seq

  • Hu, Cheng-Cheng;Gan, Ping;Zhang, Rui-Ying;Xue, Jin-Xia;Ran, Long-Ke
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9439-9444
    • /
    • 2014
  • Purpose: To identify prostate cancer lncRNAs using a pipeline proposed in this study, which is applicable for the identification of lncRNAs that are differentially expressed in prostate cancer tissues but have a negligible potential to encode proteins. Materials and Methods: We used two publicly available RNA-Seq datasets from normal prostate tissue and prostate cancer. Putative lncRNAs were predicted using the biological technology, then specific lncRNAs of prostate cancer were found by differential expression analysis and co-expression network was constructed by the weighted gene co-expression network analysis. Results: A total of 1,080 lncRNA transcripts were obtained in the RNA-Seq datasets. Three genes (PCA3, C20orf166-AS1 and RP11-267A15.1) showed a significant differential expression in the prostate cancer tissues, and were thus identified as prostate cancer specific lncRNAs. Brown and black modules had significant negative and positive correlations with prostate cancer, respectively. Conclusions: The pipeline proposed in this study is useful for the prediction of prostate cancer specific lncRNAs. Three genes (PCA3, C20orf166-AS1, and RP11-267A15.1) were identified to have a significant differential expression in prostate cancer tissues. However, there have been no published studies to demonstrate the specificity of RP11-267A15.1 in prostate cancer tissues. Thus, the results of this study can provide a new theoretic insight into the identification of prostate cancer specific genes.

Aspartyl-tRNA Synthetase from Acidithiobacillus ferrooxidans Aspartylates Both tRNA$^{Asp}$ and tRNA$^{Asn}$

  • Keem, Joo-Oak;Choi, Soon-Yong;Koh, Suk-Hoon;Hyun, Sung-Hee;Min, Bok-Kee
    • Biomedical Science Letters
    • /
    • v.13 no.2
    • /
    • pp.105-110
    • /
    • 2007
  • Aspartyl-tRNA synthetase (AspRS) exists in two different forms with respect to tRNA recognition. The discriminating enzyme (D-AspRS) recognizes only tRNA$^{Asp}$, while the non-discriminating one (ND-AspRS) also recognizes tRNA$^{Asn}$ and therefore forms both Asp-tRNA$^{Asn}$ and Asp-tRNA$^{Asp}$. Plus primary sequence distinguishes two general groups of AspRS. There is a predominantly bacterial-type, larger AspRS (about 580 aa) in addition to a shorter archaeal/eukaryotic type (about 430 aa). In vivo data made clear that discriminating and non-discriminating enzymes exist in both groups. The determinants in the protein sequence responsible for tRNA discrimination are not hewn. The AspRS from Acidithiobacillus ferrooxidans might be suggested ND-AspRS fur missing of AsnRS in genomic sequencing data. Therefore, we analyzed the AspRS from A. ferrooxidans with in vitro aminoacylation assay with E. coli unfractionated tRNA, in vivo missense suppression assay with tipA34 mutant and Northern hybridization with probes which were specific with tRNA$^{Asp}$ or tRNA$^{Asn}$. The AspRS from A. ferrooxidans produced more Asp-tRNA than that from E. coli. Only aspS gene from A. ferrooxidans suppressed trpA34 strain in minimal media without tryptophan. Only AspRS from A. ferrooxidans showed mischarged Asp-tRNA$^{Asn}$ band. Therefore, AspRS from A. ferrooxidans is definitely ND-AspRS.

  • PDF

Dietary Risk Assessment of Snf7 dsRNA for Coccinella septempunctata

  • Jung, Young Jun;Seol, Min-A;Choi, Wonkyun;Lee, Jung Ro
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.3
    • /
    • pp.210-218
    • /
    • 2021
  • Recently, pest-resistant living modified (LM) crops developed using RNA interference (RNAi) technology have been imported into South Korea. However, the potential adverse effects of unintentionally released RNAi-based LM crops on non-target species have not yet been reported. Coccinella septempunctata, which feeds on aphids, is an important natural enemy insect which can be exposed to the double-stranded RNA (dsRNA) produced by RNAi-based LM plants. To assess the risk of ingestion of Snf7 dsRNA by C. septempunctata, we first identified the species through morphological analysis of collected insects. A method for species identification at the gene level was developed using a specific C. septempunctata 12S rRNA. Furthermore, an experimental model was devised to assess the risk of Snf7 dsRNA ingestion in C. septempunctata. Snf7 dsRNA was mass-purified using an effective dsRNA synthesis method and its presence in C. septempunctata was confirmed after treatment with purified Snf7 dsRNA. Finally, the survival rate, development time, and dry weight of Snf7 dsRNA-treated C. septempunctata were compared with those of GFP and vATPase A dsRNA control treatments, and no risk was found. This study illustrates an effective Snf7 dsRNA synthesis method, as well as a high-concentration domestic insect risk assessment method which uses dsRNA to assess the risk of unintentional released of LM organisms against non-target species.

Transient receptor potential melastatin type 7 channels are involved in zinc-induced apoptosis in gastric cancer

  • Kim, Byung-Joo
    • Animal cells and systems
    • /
    • v.15 no.2
    • /
    • pp.123-130
    • /
    • 2011
  • Transient receptor potential melastatin 7 (TRPM7) channels are novel $Ca^{2+}$-permeable non-selective cation channels that are ubiquitously expressed. Activation of TRPM7 channels has been shown to be involved in the survival of gastric cancer cells. Here we show evidence suggesting that TRPM7 channels play an important role in $Zn^{2+}$- mediated cellular injury. Using a combination of electrophysiology, pharmacological analysis, small interfering RNA (siRNA) methods and cell death assays, we showed that activation of TRPM7 channels augmented $Zn^{2+}$-induced apoptosis of AGS cells, the most common human gastric adenocarcinoma cell line. The $Zn^{2+}$-mediated cytotoxicity was inhibited by the non-specific TRPM7 blockers $Gd^{3+}$ or 2 aminoethoxydiphenyl borate (2-APB) and TRPM7 specific siRNA. In addition, we showed that overexpression of TRPM7 channels in HEK293 cells increased $Zn^{2+}$- induced cell injury. Thus, TRPM7 channels may represent a novel target for physiological disorders where $Zn^{2+}$ toxicity plays an important role.

Long Non-coding RNA GAS5 Functions as a Tumor Suppressor in Renal Cell Carcinoma

  • Qiao, Hui-Ping;Gao, Wei-Shi;Huo, Jian-Xin;Yang, Zhan-Shan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.1077-1082
    • /
    • 2013
  • Background: Renal cell carcinoma (RCC) is a malignancy with a poor prognosis. We aimed to explore whether the expression of Long Non-Coding RNA (LncRNA) growth arrest-specific transcript 5 (GAS5) is associated with RCC genesis. Methods: We selected twelve clinical samples diagnosed for renal clear cell carcinoma and found that the LncRNA GAS5 transcript levels were significantly reduced relative to those in adjacent unaffected normal renal tissues. Results: In addition, expression of GAS5 was lower in the RCC cell line A498 than that in normal renal cell line HK-2. Furthermore, using functional expression cloning, we found that overexpression of GAS5 in A498 cells inhibited cell proliferation, induced cell apoptosis and arrested cell cycling. At the same time, the migration and invasion potential of A498 cells were inhibited compared to control groups. Conclusion: Our study provided the first evidence that a decrease in GAS5 expression is associated with RCC genesis and progression and overexpression of GAS5 can act as a tumor suppressor for RCC, providing a potential attractive therapeutic approach for this malignancy.

Studies on Peroxidase Isozymes of Tobacco and Korean Radish: implication of Specific Isoperoxidase in Shoot Formation (담배와 무 Peroxidase Isozyme들의 세포 생화학적 연구: 조직 특이성 발현과의 연관성)

  • 김승수
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.357-389
    • /
    • 1987
  • In an attempt to clarify the physiological functions of individual isoperoxidases, we have studied enzymatic and immunological properties as well as cellular distribution of isoperoxidases from tobacco callus and Korean radish. The gene expression patterns of isoperoxidases in shoot and non-shoot-forming tobbaco callus were also examined by rabbit reticulocyte lysatein vitro translation system. These results indicate that fraction of translatable poly(A)-isoperoxidase mRNA was increased considerably in shoots. At the present time, at least 6-7 isoperoxidases could be detected from the translation mixture of total cellular RNA, among which only one cell wall localized anodic isoperoxidase (named A3) mRNA was bimorphic mRNA. These data suggest the possible regulation of peroxidase activity during shoot formation by altering the polyadenylation state of mRNA. In case of Korean radish seedlings, poly(A)- peroxidase mRNA were also increased depending upon aging.

  • PDF

Molecular Cloning of Adipose Tissue-specific Genes by cDNA Microarray

  • Kim, Kee-Hong;Moon, Yang Soo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1837-1841
    • /
    • 2003
  • In an attempt to isolate novel molecules that may play a regulatory role in adipocyte differentiation, we devised an experimental strategy to identify adipose tissue-specific genes by modifying cDNA microarray technique. We used genefilter membranes containing approximately 15,000 rat non-redundant EST clones of which 4,000 EST were representative clones of known genes and 11,000 ESTs were uncharacterized clones. A series of hybridization of genefilter membranes with cDNA probes prepared from various rat tissues and nucleic acids sequence analysis allowed us to identify two adipose-tissue specific genes, adipocyte-specific secretory factor (ADSF) and H-rev107. Verification of tissue-specific expression patterns of these two genes by Northern blot analysis showed that ADSF mRNA is exclusive expressed in adipose tissue and the H-rev107 mRNA is predominantly expressed in adipose tissue. Further analysis of gene expression of ADSF and H-rev107 during 3T3-L1 adipocyte differentiation revealed that the ADSF and H-rev107 gene expression patterns are closely associated with the adipocyte differentiation program, indicating their possible role in the regulation of adipose tissue development. Overall, we demonstrated an application of modified cDNA microarray technique in molecular cloning, resulting in identification of two novel adipose tissue-specific genes. This technique will also be used as a useful tool in identifying novel genes expressed in a tissue-specific manner.