• Title/Summary/Keyword: Non-solvent

Search Result 488, Processing Time 0.029 seconds

A Study on Low Residue Flux for Improving Flip Chip Non-wet and Reliability (Flip Chip Non-wet 개선 및 신뢰성 향상을 위한 Low Residue Flux 구현 방안 연구)

  • Lee, Hyunsuk;Kim, Minseok;Kim, Taehoon;Moon, Kiill
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.45-50
    • /
    • 2021
  • As the difficulty of flip chip products increases, there is a growing interest in the material of flux, which is safe from the solder wetting and reliability. In the case of no clean flux, there is merit in terms of process efficiency because there is no cleaning process. But Cu migration and delamination can be occurred if the residue remains after the reflow process. In this study, major element materials, solvent and activator, are changed and confirmed effect of non-wet and reliability in the package environment. Stability of materials were secured through storage stability evaluation, and we found out non-wet zero materials through the application of two types of solvent and activator with different boiling point and the increase of activator content. After reliability test, no delamination was found in the plane analysis, which secured the final composition of low residue flux.

Preparation and characterization of polyethersulfone microfiltration membrane by 2-methoxy ethanol nonsolvent additive

  • Shin, Se-Jong;Kim, Hyung-Sik;Min, Byoung-Ryul
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.166-169
    • /
    • 2004
  • Microfiltration membranes were prepared from aromatic polyethersulfone (PES) polymer, using aprotic solvent (N-methyl-2-pyrrolidone, NMP) and non-solvent additive (2-methoxy ethanol, 2-ME) by the phase inversion co-process of the vapor-induced phase inversion (VIPI) and the nonsolvent-induced phase inversion (NIPI). According to the change of the additive amount, the solvent amount and the relative humidity, membrane characterization was studied. The non-solvent additive in casting solution played an important role in membrane morphology. During the vapor-induced phase inversion, the relative humidity led to water sorption on the surface of casting dope at which pore formation was generated. The prepared membranes were characterized by scanning electron microscope observations, measurements of capillary flow porometer and pure water flux (PWP). Also the thermodynamic and kinetic properties of membrane-forming system were studied through coagulation value, light transmittance and viscosity.

  • PDF

Effect of Deuterated Solvents on the Excited State Photophysical Properties of Curcumin

  • Barik, A.;Goel, N.K.;Priyadarsini, K.I.;Mohan, Hari
    • Journal of Photoscience
    • /
    • v.11 no.3
    • /
    • pp.95-99
    • /
    • 2004
  • Optical absorption and emission studies have been carried out to understand the effect of deuterium on the solvent dependent photophysical properties of curcumin in deuterated solvents such as $CDCl_3,\;(CD_3)_2SO,\;(CD_3)_2CO,\;CD_3OD\;and\;CD_3CN$. Optical absorption spectral studies showed that there is no significant shift in absorption maxima compared to the non-deuterated solvent. The fluorescence maxima shows significant shift with polarity of solvent but not much affected by the deuteration. The fluorescence quantum yield of curcumin increased marginally in almost all the deuterated solvents, indicating reduction in the non-radiative pathways. The fluorescence decay was biexponential in all the solvents and the average fluorescence lifetime was not much affected with deuteration, but showed decrease with increasing solvent polarity. Based on these studies, it is concluded that intermolecular hydrogen transfer is only partially responsible for the excited state deactivation of curcumin.

  • PDF

Can Non-aqueous Solvent Desalinate?: Suggestion of the Screening Protocol for Selection of Potential Solvents (비수용성 용매를 이용한 탈염화 가능한가?: 적용 가능한 용매선정 기법 제안)

  • Choi, Oh Kyung;Seo, Jun Ho;Kim, Gyeong Soo;Kim, Dooil;Lee, Jae Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.48-54
    • /
    • 2020
  • This paper presents a screening protocol for the selection of solvents available for the solvent extraction desalination process. The desalination solvents hypothetically and theoretically require the capability of (1) Forming hydrogen bonds with water, (2) Absorbing some water molecules into its non-polar solvent layer, (3) Changing solubility for water-solvent separation, and (4) Rejecting salt ions during absorption. Similar to carboxylic acids, amine solvents are solvent chemicals applicable for desalination. The key parameter for selecting the potential solvent was the octanol-water partitioning coefficient (Kow) of which preferable value for desalination was in the range of 1-3. Six of the 30 amine solvents can absorb water and have a variable, i.e., temperature swing solubility with water molecule for water-solvent separation. Also, the hydrogen bonding interaction between solvent and water must be stronger than the ion-dipole interaction between water and salt, which means that the salt ions must be broken from the water and only water molecules absorbed for the desalination. In the final step, three solvents were selected as desalination solvents to remove salt ions and recover water. The water recovery of these three solvents were 15.4 %, 2.8 %, 10.5 %, and salt rejection were 76 %, 98 %, 95 %, respectively. This study suggests a new screening protocol comprising the theoretical and experimental approaches for the selection of solvents for the desalination method which is a new and challenges the desalination process in the future.

Preparation and Characterization Study of PET Nanofiber-reinforced PEI Membrane, Investigation of the Application of Organic Solvent Nanofiltration Membrane (PET 나노섬유 강화 PEI 막의 제조 및 특성화 연구, 그에 따른 유기용매 나노여과막 가능성 검증)

  • Sung-Bae Hong;Kwangseop Im;Dong-Jun Kwon;Sang Yong Nam
    • Journal of Adhesion and Interface
    • /
    • v.24 no.1
    • /
    • pp.17-25
    • /
    • 2023
  • In this study, waste polyethylene terephthalate (PET) was recycled to produce a support and then polyetherimide (PEI) was used for environmentally friendly organic solvent nanofiltration. The prepared composite membrane was first prepared by electrospinning a PET support, then casted on the support using PEI having excellent solvent resistance, and organic solvent nanoparticles using a Non-solvent Induced Phase Separation (NIPS) method. A filtration membrane was prepared. First, the fiber diameter and tensile strength of the PET scaffold prepared prior to membrane fabrication were identified through morphology analysis, and the optimal scaffold for the organic solvent nanofiltration membrane was identified. Afterward, the PET/PEI composite membrane prepared was checked for the DEA removal rate of Congo red having a molecular weight of 697 g/mol in ethanol to understand the performance as an organic solvent nanofiltration membrane according to the concentration of PEI. Finally, the removal rate of Congo red was 90% or more.

New Separators Based on Non-Polyolefin Polymers for Secondary Lithium Batteries

  • Seol, Wan-Ho;Lee, Yong-Min;Lee, Jun-Young;Han, Young-Dal;Ryu, Myung-Hyun;Park, Jung-Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.82-87
    • /
    • 2007
  • New porous separators based on non-polyolefin materials including the blend of poly (vinyl chloride) (PVC)/poly (vinylidene fluoride-co-hexafluoropropylene) (P(VdF-co-HFP)/poly(methyl methacrylate) (PMMA), and the porous separator based on poly (vinylidene fluoride) (PVdF) were prepared by phase inversion method. The porosity and morphology were controlled with phase inversion rate, which is governed by the relative content of non-solvent and solvent in coagulation bath. To enhance tensile strength, the solvent pre-evaporation and uni-axial stretching processes were applied. The ionic conductivity was increased with increasing stretching ratio, and tensile strength was increased with increasing solvent pre-evaporation time and stretching ratio. The 200% stretched PVdF separator showed 56 MPa of tensile strength, and the ionic conductivity of the stretched PVdF separator was $8.6{\times}10^{-4}\;S\;cm^{-1}\;at\;25^{\circ}C$.

Non-Solvent Liquid Resin of Non-Discoloration Type at Room Temperature (비변색타입의 무용제형 상온 액상수지)

  • Moon, Jin-Bok;Mok, Dong-Yeop;Kim, Gu-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.669-675
    • /
    • 2009
  • A study has been made on the preparation of liquid resin of non-solvent and non-discoloration type for replacement of the soft PVC at room temperature. A new synthetic process was developed by structure-control design of polyurethane synthesis using pre-polymer and polyols as curing agent. The optimum recipe was made according to macro-glycols, molecular weight and reaction conditions, and the final products indicated that the mechanical properties such as tensile strength, tear strength and flexibility was very excellent than PVC products. Also, viscosity, hardness and color operations of the final products can be controlled by this system. And yellowing property by UV and NOx gas was improved from the various additive experiment.

Desorption Efficiency of Various Cosolvents for Organic Solvent Mixtures Collected on Activated Charcoal Tube (활성탄관에 포집된 혼합 유기용제의 보조탈착용매 변화에 따른 탈착률 비교)

  • Kim, Kang Yoon;Ro, In Bong;Kim, Hyun Wook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.2
    • /
    • pp.209-221
    • /
    • 1996
  • The purpose of this study was to find a suitable cosolvent to $CS_2$ so that desorption efficiency can be improved for both polar and non-polar organic solvent mixtures collected on an activated charcoal tube. Cosolvents added to $CS_2$ include: DMF(N,N-dimethylformamide): $CS_2$ (v/v 1:99), DMF:$CS_2$(v/v 3:97), BC (butyl carbitol, 2-(2-butoxy ethoxy) ethanol):$CS_2$(v/v 1:99), and BC:$CS_2$(v/v 3:97)). The results obtained were as follows : 1. Comparing the desorption efficiency of $CS_2$ with those of $CS_2$ with 1, 3, 5 % DMF and 1, 3 % BC cosolvents for two different groups of charcoal tubes each containing 8 different polar and non-polar organic solvents with 3 different concentration levels, the desorption efficiencies of the cosolvent-added $CS_2$ increased significantly for all polar organic solvents regardless of concentration levels tested. For non-polar organic solvents, no noticeable improvement was detected except xylene and trichloroethylene. The desorption efficiency of xylene increased significantly while that of trichloroethylene increased significantly at the lowest concentration level tested. 2. Either 5 % DMF or 3 % BC was the most suitable cosolvent because the desorption efficiency for non-polar organic solvent mixtures was similar or slightly improved compared with that of $CS_2$, while those of for polar organic solvent mixtures were above 75 % except for cyclohexanone. 3. The smallest variations in desorption efficiency represented by the ratio calculated from the maximum to minimum desorption efficiency for all concentration levels tested were found when 3 % BC was used as a cosolvent. The above results indicate that the desorption efficiency of $CS_2$ particularly for polar organic solvent mixtures collected on a charcoal tube can be significantly improved by the use of cosolvents such as 5 % DMF or 3 % BC. A caution, however, is in order for selecting a cosolvent whenever the cosolvent itself is being used in the workplace or the impurities contained in the cosolvent may interfere with the analytical results. In addition, to improve desorption efficiencies for such organic solvents as cyclohexanone or ketones, it is recommended to use suitable collection and desorption media other than the traditional method of charcoal tube collection/$CS_2$ desorption.

  • PDF

Compatibility at Polymer/Polymer Mixture Interfaces in the Presence of Solvent

  • Yoon, Kyung-Sup;Park, Hyung-Suk;Lee, Jo-Woong;Chang, Tai-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.3
    • /
    • pp.214-221
    • /
    • 1994
  • We present some results obtained from theoretical study on a non-symmetrical A/BC polymeric system including solvent which consists of two phases, a polymeric phase A on one side and a mixture of polymers B (as a compatibilizer) and C on the other in the presence of a solvent. By employing the functional integral techniques we derive the mean-field equations and solve them numerically to deduce the physical properties of the interface involving the polymers and solvent concentration profiles in the limit that molecular weights of all the polymers involved tend to infinity. The calculations are performed for typical values of the Flory interaction parameters and for the volume fraction of polymer B in the asymptotic phase and of solvent. In the polymers/solvent blend under consideration the interfacial adsorption of polymer B, the solvent concentration, and degrees of the specific interaction between the polymers are found to play important roles in modification of the interfacial properties.

NaHSO4/SiO2: An Efficient Catalyst for the Synthesis of β-Enaminones and 2-Methylquinolin-4(1H)-Ones under Solvent-Free Condition (NaHSO4/SiO2: Solvent-Free 반응 조건에서 β-Enaminone들과 2-Methylquinolin-4(1H)-One들의 합성을 위한 효율적인 촉매)

  • Sapkal, Suryakant B.;Shelke, Kiran F.;Shingate, Bapurao B.;Shingare, Murlidhar S.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.6
    • /
    • pp.723-726
    • /
    • 2010
  • An efficient and simplified protocol for $NaHSO_4/SiO_2$ catalyzed solvent-free synthesis of $\beta$-enaminone and 2-methylquinolin-4(1H)-one derivatives under microwave irradiation is described. A series of functionalized derivatives have been synthesized in shorter reaction times with moderate to good yields. The use of milder catalyst in non-conventional method offers significant advantages over conventional methods, such as higher selectivities, simplicity, solvent-free reaction and non-environmental polluting conditions.