• Title/Summary/Keyword: Non-small cell lung cancer cell lines

Search Result 63, Processing Time 0.029 seconds

Induction of Apoptosis by Gamisamgibopae-tang in A549 Human Lung Cancer Cells through Modulation of Bcl-2 Family and Activation of Caspases (Bcl-2 family 발현 변화 및 caspases의 활성을 통한 가미삼기보폐탕의 A549 인체폐암세포 apoptosis 유도)

  • Kim, Hyun-Joong;Kim, Hong-Gi;Kim, Jin-Young;Kam, Cheol-Woo;Park, Dong-Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.3
    • /
    • pp.630-641
    • /
    • 2008
  • Gamisamgibopae-tang (GMSGBPT) is a traditional Korean medicine, which has been used for patients suffering from a lung disease in Oriental medicine. In the present study, we examined the biochemical mechanisms of apoptosis by GMSGBPT in NCI-H460 and A549 human non-small-cell lung cancer cell lines. It was found that GMSGBPT could inhibit the cell proliferation of A549 cells in a concentration-dependent manner, however GMSGBPT did not affect the cell proliferation of NCI-H460 cells. Apoptotic cell death in A549 cells were detected using DAPI staining and annexin V fluorescein methods. The induction of apoptotic cell death by GMSGBPT was connected with a down-regulation of anti-apoptotic Bcl-2 and Bcl-xL expression, and proteolytic activation of caspase-3 and caspase-9 in A549 cells. However, GMSGBPT did not affect the levels of pro-apoptotic Bax and Bad expression, and activity of caspase-8. GMSGBPT treatment also concomitant degradation and/or inhibition of poly (ADP-ribose) polymerase (PARP), ${\beta}$-catenin, phospholipase C-1 (PLC${\gamma}$1) and DNA fragmentation factor 45/inhibitor of caspase-activated DNase (DFF45/ICAD). Taken together, these findings suggest that GMSGBPT may be a potential chemotherapeutic agent for the control of human non-small-cell lung cancer cells and further studies will be needed to identify the active compounds that confer the anti-cancer activity of GMSGBPT.

Induction of Indoleamine 2,3-dioxygenase (IDO) Enzymatic Activity Contributes to Interferon-Gamma Induced Apoptosis and Death Receptor 5 Expression in Human Non-small Cell Lung Cancer Cells

  • Chung, Ting Wen;Tan, Kok-Tong;Chan, Hong-Lin;Lai, Ming-Derg;Yen, Meng-Chi;Li, Yi-Ron;Lin, Sheng Hao;Lin, Chi-Chen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7995-8001
    • /
    • 2014
  • Interferon-gamma (IFN-${\gamma}$) has been used to treat various malignant tumors. However, the molecular mechanisms underlying the direct anti-proliferative activity of IFN-${\gamma}$ are poorly understood. In the present study, we examined the in vitro antitumor activity of IFN-${\gamma}$ on two human non-small-cell lung carcinoma (NSCLC) cell lines, H322M and H226. Our findings indicated that IFN-${\gamma}$ treatment caused a time-dependent reduction in cell viability and induced apoptosis through a FADD-mediated caspase-8/tBid/mitochondria-dependent pathway in both cell lines. Notably, we also postulated that IFN-${\gamma}$ increased indoleamine 2,3-dioxygenase (IDO) expression and enzymatic activity in H322M and H226 cells. In addition, inhibition of IDO activity by the IDO inhibitor 1-MT or tryptophan significantly reduced IFN-${\gamma}$-induced apoptosis and death receptor 5 (DR5) expression, which suggests that IDO enzymatic activity plays an important role in the anti-NSCLC cancer effect of IFN-${\gamma}$. These results provide new mechanistic insights into interferon-${\gamma}$ antitumor activity and further support IFN-${\gamma}$ as a potential therapeutic adjuvant for the treatment of NCSLC.

Ethanolic extract of Condurango (Marsdenia condurango) used in traditional systems of medicine including homeopathy against cancer can induce DNA damage and apoptosis in non small lung cancer cells, A549 and H522, in vitro

  • Sikdar, Sourav;Mukherjee, Avinaba;Boujedaini, Naoual;Khuda-Bukhsh, Anisur Rahman
    • CELLMED
    • /
    • v.3 no.1
    • /
    • pp.9.1-9.10
    • /
    • 2013
  • In traditional systems of medicine including homeopathy, the Condurango extract (Con) is often used to cure stomach cancer mainly, without having any scientific validation of its anti-cancer ability. Con has therefore been tested against non-small-cell lung cancer cells (NSCLC) A549 and NCI-H522 (H522) known to contain the KRAS mutation, making them resistant to most chemotherapeutic agents. As cancer cells generally defy cytotoxicity developed by chemopreventive agents and escape cell death, any drug showing the capability of preferentially killing cancer cells through apoptosis is worth consideration for judicious application. A549 and H522 cells were exposed to $0.35{\mu}g/{\mu}l$ and $0.25{\mu}g/{\mu}l$ of Con, respectively, for 48 h and analysed based on various protocols associated with apoptosis and DNA damage, such as MTT assay to determine cell viability, LDH assay, DNA fragmentation assay, comet assay, and microscopical examinations of DNA binding fluorescence stains like DAPI, Hoechst 33258 and acridine orange/ethidium bromide to determine the extent of DNA damage made in drug-treated and untreated cells and the results compared. Changes in mitochondrial membrane potential and the generation of reactive oxygen species were also documented through standard techniques. Con killed almost 50% of the cancer cells but spared normal cells significantly. Fluorescence studies revealed increased DNA nick formation and depolarized membrane potentials after drug treatment in both cell types. Caspase-3 expression levels confirmed the apoptosis-inducing potential of Con in both the NSCLC lines. Thus, overall results suggest considerable anticancer potential of Con against NSCLC in vitro, validating its use against lung cancer by practitioners of traditional medicine including homeopathy.

Telomerase Activity in Non-small Cell Lung Cancer (비소세포폐암에 있어서의 Telomerase 활성도)

  • 김진국;김관민
    • Journal of Chest Surgery
    • /
    • v.30 no.7
    • /
    • pp.701-707
    • /
    • 1997
  • Although many reseraches have been persued to detect the molecular tumor marker to define the cancer, ideal tumor marker which speak for the characteristics of malignancy and has high sensitivity and specificity is not known. One of the characteristics of the malignant cells is indefinite proliferative potential, in other word, immortality. The expression of telomerase and stabilization of te10meres are con omitant with the attaiunent of immortality in tumor cells; thus the measurement of telomerase activity in clinically obtained tumor samples may provide important information which would be useful as a diagnostic marker to detect immortal cancer cells. Telomerase activity was analyzed in 12 non-small cell . lung cancer cell lines and 41 primary non-small cell lung cancers with the use of a PCR-based assay. All the cell lines and the majority of tumors displayed telomerase activity, but telomerase was not detectable in most of the corresponding pathologically-normal tissues. Telomere length was not correlated with telomerase activity. The present study indicate that measurement of telomerase activity may be useful as a molecular tumor marker in non-small cell lung cancer.

  • PDF

An Aqueous Extract of a Bifidobacterium Species Induces Apoptosis and Inhibits Invasiveness of Non-Small Cell Lung Cancer Cells

  • Ahn, Joungjwa;Kim, Hyesung;Yang, Kyung Mi
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.885-892
    • /
    • 2020
  • Chemotherapy regimens for non-small cell lung cancer (NSCLC) have various adverse effects on the human body. For this reason, probiotics have received attention regarding their potential value as a safe and natural complementary strategy for cancer prevention. This study analyzed the anticancer effects of aqueous extracts of probiotic bacteria Bifidobacterium bifidum (BB), Bifidobacterium longum (BL), Bifidobacterium lactis (BLA), Bifidobacterium infantis 1 (BI1), and Bifidobacterium infantis 2 (BI2) on NSCLC cell lines. When the aqueous extracts of probiotic Bifidobacterium species were applied to the NSCLC cell lines A549, H1299, and HCC827, cell death increased considerably; in particular, the aqueous extracts from BB and BLA markedly reduced cell proliferation. p38 phosphorylation induced by BB aqueous extract increased the expression of cleaved caspase 3 and cleaved poly (ADP-ribose) polymerase (PARP), consequently inducing the apoptosis of A549 and H1299 cells. When the p38 inhibitor SB203580 was applied, phosphorylation of p38 decreased, and the expression of cleaved caspase 3 and cleaved PARP was also inhibited, resulting in a reduction of cell death. In addition, BB aqueous extracts reduced the secretion of MMP-9, leading to inhibition of cancer cell invasion. By contrast, after transfection of short hairpin RNA shMMP-9 (for a knockdown of MMP-9) into cancer cells, BB aqueous extracts treatment failed to suppress the cancer cell invasiveness. According to our results about their anticancer effects on NSCLC, probiotics consisting of Bifidobacterium species may be useful as adjunctive anticancer treatment in the future.

Growth Inhibition and Apoptosis Induction of Sulindac on Human Lung Cancer Cells (비소세포 폐암 세포주에서 Sulindac의 성장억제와 세포고사 유도)

  • Kim, Hak Ryul;Yang, Sei Hoon;Jeong, Eun Taik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.5
    • /
    • pp.514-522
    • /
    • 2004
  • Background : Non-steroidal anti-inflammatory drugs (NSAID) are useful in chemoprevention of colorectal cancers. Continuous NSAID administation causes 40% to 50% reduction in relative risk for colorectal cancer. Sulindac possesses an antiproliferative effect and induces apoptosis and tumor regression on colon cancer and other types of cancers. We intended to analyze the effects of sulindac in three non-small cell lung cancer cell lines. Materials and Methods : The human lung cancer cell lines, A549, NCI-H157 and NCI-H460 were used for this study. Viability was tested by MTT assay, and cell death rate was measured by lactate dehydrogenase(LDH) release. Apoptosis was estimated by flow cytometric analysis and nuclear staining. Results: Sulindac was able to decrease the viability of non-small cell lung cancer cells in a dose- and time- dependent manner. In a parallel effect of sulindac on cell death rate, LDH release was increased in sulindac-treated lung cancer cells. Sulindac significantly increased apoptosis characterized by an increase of $sub-G_0/G_1$ fraction and morphological change of nuclei. The rate of apoptotic cells after sulindac treatment in lung cancer cells increased in a time- and dose- dependent manner in flow cytometric analysis. Apoptotic cells were defined as nuclear shrinkage, chromatin condensation and nuclear fragmentation of cells. Conclusion : Sulindac decreases viability and induces the apoptosis of lung cancer cells. Further studies will be needed to elucidate the potential mechanism of sulindac-induced apoptosis in lung cancer cells.

Chalcones-Sulphonamide Hybrids: Synthesis, Characterization and Anticancer Evaluation

  • Khanusiya, Mahammadali;Gadhawala, Zakirhusen
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.2
    • /
    • pp.85-93
    • /
    • 2019
  • A panel of chalcone-sulphonamide hybrids has been designed by tethering appropriate sulphonamide scaffold with substituted chalcones as a multi-target drug for anticancer screening. Chalcones were prepared by Claisen-Schmidt condensation reaction of a substituted aldehyde with para aminoacetophenone. All the synthesized compounds were evaluated against selected five cancer cell lines, MCF-7 (Breast cancer), DU-145 (Human prostate Carcinoma), HCT-15 (Colon cancer), NCIH-522 (stage 2, adenocarcinoma; non-small cell lung cancer) and HT-3 (Human cervical cancer). Most of the synthesized chalcone-sulphonamide hybrids showed amended cytotoxic activity against various cancer cell lines which may be attributed to the linkage of sulphonamide with chalcone skeleton. The synthesized compounds were characterized by FT-IR, $^1H$ NMR, $^{13}C$ NMR and HR-LCMS and spectral study assert the structures of synthesized sulphonamide-chalcone hybrids.

Evaluation of Anticancer Activity of Curcumin Analogues Bearing a Heterocyclic Nucleus

  • Ahsan, Mohamed Jawed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1739-1744
    • /
    • 2016
  • We report herein an in vitro anticancer evaluation of a series of seven curcumin analogues (3a-g). The National Cancer Institute (NCI US) Protocol was followed and all the compounds were evaluated for their anticancer activity on nine different panels (leukemia, non small cell lung cancer, colon cancer, CNS cancer, melanoma, ovarian cancer, renal cancer, prostate cancer and breast cancer) represented by 60 NCI human cancer cell lines. All the compounds showed significant anticancer activity in one dose assay (drug concentration $10{\mu}M$) and hence were evaluated further in five dose assays (0.01, 0.1, 1, 10 and $100{\mu}M$) and three dose related parameters $GI_{50}$, TGI and $LC_{50}$ were calculated for each (3a-g) in micro molar drug concentrations (${\mu}M$). The compound 3d (NSC 757927) showed maximum mean percent growth inhibition (PGI) of 112.2%, while compound 3g (NSC 763374) showed less mean PGI of 40.1% in the one dose assay. The maximum anticancer activity was observed with the SR (leukemia) cell line with a $GI_{50}$ of $0.03{\mu}M$. The calculated average sensitivity of all cell lines of a particular subpanel toward the test agent showed that all the curcumin analogues showed maximum activity on leukemia cell lines with $GI_{50}$ values between 0.23 and $2.67{\mu}M$.

Expression of the FHIT gene Located in Chromosome 3p14.2 in Human Lung Cancer Cell Lines (폐암 세포주에서 염색체 3p14.2에 위치한 FHIT 유전자의 발현 이상에 대한 연구)

  • Kim, Cheol-Hyeon;Yoo, Chul-Gyu;Lee, Choon-Taek;Han, Sung-Koo;Shim, Young-Soo;Kim, Young-Whan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.5
    • /
    • pp.984-991
    • /
    • 1998
  • Background: The 3p deletions has been shown to be the most frequent alteration in lung cancers, strongly suggesting the presence of at least one tumor suppressor gene in this chromosomal region. However, no solid candidate for the tumor suppressor gene(s) on 3p has as yet been identified. Recent attention has focused on a candidate 3p14.2 tumor suppressor gene, FHIT, which is located in a region that is homozygously deleted in multiple tumor cell lines and disrupted by the hereditary renal cell carcinoma t(3;8) chromosomal translocation breakpoint FHIT also spans FRA3B, the most common fragile sites in the human genome. In the present study, we have analyzed expression of the FHIT gene in lung cancer cell lines. Methods: RNA from 21 lung cancer cell lines (16 NSCLC, 5 SCLC) were extracted using standard procedures. Random-primed. first strand cDNAs were synthesized from total RNA and PCR amplication of coding exons 5 to 9 was performed. The RT-PCR products were electrophoresed in 1.5% ethidium bromide-stained agarose gels. Results: 12 of 21(57%) lung cancer cell lines exhibited absent or aberrant FHIT expression [7 of 16(44%) of non-small cell lung cancer and 5 of 5(100%) of small cell lung cancer cell lines]. Conclusion: The result shows that abnormal transcription of the FHIT gene is common in human lung cancer cell lines, especially in small cell lung cancer.

  • PDF

Quantification of Serum Free RNA as a Predictive Biomarker for the Response to Chemotherapy in Patients with Lung Cancer: A Pilot Study

  • Um, Soo-Jung;Lee, Su-Mi;Lee, Soo-Keol;Son, Choon-Hee;Ko, Mee-Kyung;Roh, Mee-Sook;Lee, Ki-Nam;Choi, Pil-Jo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.70 no.4
    • /
    • pp.301-306
    • /
    • 2011
  • Background: It is well-known that cell-free nucleic acids rise in patients with many types of malignancies. Several recent experimental studies using cancer cell lines have shown that changes in cell-free RNA are predictive of the response to chemotherapy. The objective of this study was to determine whether quantification of free RNA can be used as a biomarker for clinical responses to chemotherapy in patients with lung cancer. Methods: Thirty-two patients with lung cancer (non-small cell lung cancer, n=24; small cell lung cancer, n=8) were divided into 2 groups according to their responses to chemotherapy (response group, n=19; non-response group, n=13). Blood samples were collected before and after two cycles of chemotherapy. Real-time quantitative RT-PCR was used for transcript quantification of the glyceraldehyde-3-phosphate dehydrogenase gene. Results: The pre chemotherapy values (Response group $41.36{\pm}1.72$ vs. Non-response group $41.33{\pm}1.54$, p=0.78) and post chemotherapy values (Response group $39.92{\pm}1.81$ vs. Non-response group $40.41{\pm}1.47$, p=0.40) for cell free RNA concentrations, expressed as Ct GAPDH (threshold cycle glyceraldehyde-3-phosphate dehydrogenase gene) levels, was not different between the two groups. There was no significant relationship between changes in the cell free RNA level clinical responses after chemotherapy (p=0.43). Conclusion: We did not find a correlation between quantification of serum cell free RNA levels and clinical responses to chemotherapy in patients with lung cancer. Further investigations are needed to determine whether the cell free RNA level is a useful predictor of responses to chemotherapy in patients with lung cancer.