• Title/Summary/Keyword: Non-point source water pollution

Search Result 326, Processing Time 0.03 seconds

A Study on the Application of Agricultural Nonpoint Source Pollution(AGNPS) Model using GIS and RS (GIS와 RS를 이용한 비점원오염 모형의 적용에 관한 연구)

  • Kim, Seong-Joon;Lee, Yun-Ah;Lee, Nam-Ho;Yoon, Kwang-Sik;Hong, Seong-Gu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.4
    • /
    • pp.63-72
    • /
    • 2000
  • The objective of this study was to identify the applicability of AGNPS(Agricultural Nonpoint Source Pollution) model using RS data; Landsat TM merged by KOMPSAT EOC and GIS data. AGNPS model which is well-known distributed nonpoint source pollution model was used as the assessment tool. This model has the capability to adjust the level of pollutant load from farmstead and the fertilization level of upland field. A small agricultural watershed($4.12km^2$) which has 20 livestock farmhouses located in Gosan-myun, Ansung-gun was selected. AGNPS data were prepared by using Arc/Info, GRASS, ER-Mapper and Idrisi. Four storm events in 1999 were used for runoff calibration, and 2 storm events which were measured in hourly-base at 4 locations along the stream were used for water quality(TN, TP) calibration.

  • PDF

Study on the Management of Doam Dam Operation by the Analysis of Suspended Solids Behavior in the lake (호내 부유물질 거동 분석을 통한 도암댐 운영 방안에 관한 연구)

  • Yeom, Bo-Min;Lee, Hye Won;Moon, Hee-Il;Yun, Dong-Gu;Choi, Jung Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.470-480
    • /
    • 2019
  • The Doam lake watershed was designated as a non-point pollution management area in 2007 to improve water quality based on watershed management implementation. There have been studies of non-point source reduction with respect to the watershed management impacting the pollutant transport of the reservoir. However, a little attention has been focused on the impact of water quality improvement by the management of the dam operation or the guidelines on the dam operation. In this study, the impact of in-lake management practices combined with watershed management is analyzed, and the appropriate guidelines on the operation of the dam are suggested. The integrated modeling system by coupling with the watershed model (HSPF) and reservoir water quality model (CE-QUAL-W2) was applied for analyzing the impact of water quality management practices. A scenario implemented with sedimentation basin and suspended matter barrier showed decrease in SS concentration up to 4.6%. The SS concentration increased in the scenarios adjusting withdrawal location from EL.673 m to the upper direction(EL.683 m and EL.688 m). The water quality was comparably high when the scenario implemented all in-lake practices with water intake at EL.673 m. However, there was improvement in water quality when the height of the water intake was moved to EL.688 m during the summer by preventing sediments inflow after the rainfall. Therefore, to manage water quality of the Doam lake, it is essential to control the water quality by modulating the height of water intake through consistent turbidity monitoring during rainfall.

Water Quality Management Measures for TMDL Unit Watershed Using Load Duration Curve (수질오염총량 단위유역별 LDC(Load Duration Curve, 부하지속곡선) 적용을 통한 수질관리 대안 모색 - 금호강 유역 대상)

  • Yun, Soyoung;Ryu, Jaena;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.4
    • /
    • pp.429-438
    • /
    • 2013
  • This study was to develop effective water quality management measures using LDC (Load Duration Curve) curves for TMDL (Total Maximum Daily Loads) unit watershed. Using LDC curves, major factors for BOD and T-P concentration loads generation (i.e. point source or non-point source) in the case study area (Geumho river basin) were found for different hydrologic conditions. Different measures to deal with the pollutant loads were suggested to establish BMPs (Best Management Practices). It was found that the target area has urgent T-P management methods especially at moist and midrange hydrologic conditions because of point source pollutants occurred in developed areas. One example measure for this could be establishment of advanced treatment facility. This study proved that the use of LDC was a useful way to achieve TWQ (Target Water Quality) on the target watershed considered. It was also expected that the methodology applied in this study could have a wider application on the establishment of watershed water management measures.

Prediction of Water Quality at the Inlet of Saemangeum Bay by using Non-point Sources Runoff Simulation in the Mankyeong River Watershed (만경강 유역의 비점오염물질 유출모의를 통한 새만금 만 유입부의 수질 예측)

  • Ryu, Bum-Soo;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.761-770
    • /
    • 2013
  • This study was carried out to forecast the flow rate and water quality at the inlet of the Saemangeum bay in Korea using the SWMM(Storm Water Management Model) and the WASP(Water Analysis Simulation Program), and to analyze the impacts of pollutant loading from non-point source on the water quality of the bay. The calibration and validation of flow rate and water quality were performed using those from two monitoring points in the Mankyeong river administrated by Korean Ministry of Environment as part of the national water quality monitoring network. When the river flow rate was calibrated and validated using the rainfall intensities during 2011-2012, $R^2$ (i.e., coefficient of determination) was ranged from 0.91 to 0.96. For water qualities, it was shown that $R^2$ of BOD(Biochemical Oxygen Demand) was ranged from 0.56 to 0.86, and $R^2$ of T-N(Total Nitrogen) was from 0.64 to 0.75, and $R^2$ of T-P(Total Phosphorus) was from 0.67 to 0.89. The integrated modeling system showed significant advances in the accuracy to estimate the water quality. Finally, further simulations showed that annual average flow of the river running into the bay was estimated to be $1.439{\times}10^9m^3/year$. The discharged load of BOD, T-N, and T-P into the bay were anticipated to be 618.7 ton/year, 331.5 ton/year, and 40.4 ton/year, respectively.

A Study of Total Nitrogen Pollutant Load through Baseflow Analysis at the Watershed (하천유역에서의 기저유출 분석을 통한 총질소 하천오염부하량 연구)

  • Choi, Youn Ho;Kum, Donghuyk;Ryu, Jichul;Jung, Younghun;Kim, Yong Seok;Jeon, Ji Hong;Kim, Ki Sung;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.1
    • /
    • pp.55-66
    • /
    • 2015
  • It has been well known that it is not easy to quantify pollutant loads driven by non-point source pollution due to various factors affecting generation and transport mechanism of it. Especially pollutant loads through baseflow have been investigated by limited number of researchers. Thus in this study, the Web-based WAPLE (WHAT-Pollutant Load Estimation) system was developed and applied at study watersheds to quantify baseflow contribution of pollutant. In YbB watershed, baseflow contribution with WWTP discharge is responsible for 49.5% of total pollutant loads at the watershed. Among these, pollutant loads through baseflow (excluding any WWTP discharge) is responsible for 61.7% of it. In GbA watershed, it was found that 58.4% is contributed by baseflow with WWTP discharge 2.9% and 97.1% is by baseflow. For NbB watershed (without WWTP discharge), 52.3% of pollutant load is transported through baseflow. As shown in this study, it was found that over 50.0% of TN (Total Nitrogen) pollutant loads are contributed by non-direct runoff. Thus pollutant loads contributed by baseflow and WWTP discharge as well as direct runoff contribution should be quantified to develop and implement watershed-specific Best Management Practices during dry period.

Water Quality Monitoring by Snowmelt in Songcheon, Doam Lake Watershed (도암호 유역의 융설에 의한 수질 변화 모니터링)

  • Kwon, Hyeokjoon;Hong, Dahye;Byeon, Sangdon;Lim, Kyoungjae;Kim, Jonggun;Nam, Changdong;Hong, Eunmi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.87-95
    • /
    • 2021
  • The Doam Lake Watershed is one of Gangwon-do's non-point source management areas. This area has a lot of snowfall in winter, and it is expected that there will be a lot of soil erosion in early spring due to snow melting. In this study, snow melting was monitored in the Doam Lake watershed from February to 3, 2020. It was conducted to analyze the water quality changes by calculating the concentration of non-point source pollution caused by snowmelt, and to compare the concentration of water quality during snowmelt event with rainfall and non-rainfall event. As a result of water quality analysis, Event Mean Concentration (EMC) at the first monitoring was SS 33.9 mg/L, TP 0.13 mg/L, TN 4.33 mg/L, BOD 1.35 mg/L, TOC 1.84 mg/L. At the second monitoring, EMC were SS 81.3 mg/L, TP 0.15 mg/L, TN 3.12 mg/L, BOD 1.32 mg/L, TOC 3.46 mg/L. In parameter except SS, it showed good water quality. It is necessary to establish management measures through continuous monitoring.

Development of Integrated Water Quality Management Model for Rural Basins using Decision Support System. (의사결정지원기법을 이용한 농촌유역 통합 수질관리모형의 개발)

  • 양영민
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.5
    • /
    • pp.103-113
    • /
    • 2000
  • A decision support system DSS-WQMRA (Decision Support System-Water Quality Management in Rural Area) was developed to help regional planners for the water quality management in a rural basin. The integrated model DSS-WQMRA, written in JAVA, includes four subsystems such as a GIS, a database, water quality simulation models and a decision model. In the system, the GIS deals with landuse and the location of pollutant sources. The database manages each data and supplies input data for various water quality simulation models. the water quality simulation model is composed of the GWLF( Generalized Watershed Loading Function), PCLM(Pollutant Loading Calculation Module) and the WASP5 model. The decision model based on mixed integer programming is designed to determine optimal costs and thus allow the selection of managemental practices to meet the water quality criteria. The methodology was tested with an example application in the Bokha River Basin, Kyunggi Province in Korea. It was proved that the integrated model DSS-WQMRA could be very useful for water quality management including the non-point source pollution in rural areas.

  • PDF

An Empirical Study on Analysis Method of Impervious Surface Using IKONOS Image (IKONOS 위성영상을 이용한 불투수지표면 분석방법에 관한 실증연구)

  • 사공호상
    • Spatial Information Research
    • /
    • v.11 no.4
    • /
    • pp.509-518
    • /
    • 2003
  • Impervious surface affects urban climate, flood, and water pollution. With a higher paved rate, expanded heat containing capacity of buildings and roads raises atmospheric temperature, and increased quantity of the outflowed water brings flood during a heavy downpour. Moreover, increased non-point source pollutant load is accountable for water pollution. In this regard, it is definitely important to research and keep monitoring the current situation of paved surface, which influences urban ecosystem, disaster and pollution. In fact, collecting information on urban paved surface, which requires the time and expense, is very difficult due to its complicate structure. In order to solve the problem, this study suggested a method to utilize satellite image data for efficient survey on the current condition of paved surface. It analyzed the paved surface condition of Anyang-si by using IKONOS image and discussed the usefulness and limitation of this method.

  • PDF

Evaluation of Furrow Mulching Methods for Controlling Non-Point Source Pollution Load from a Sloped Upland (경사밭 고랑멀칭 방법에 따른 비점오염 저감효과 평가)

  • Yeob, So-Jin;Kim, Min-Kyeong;Kim, Myung-Hyun;Bang, Jeong-Hwan;Choi, Soon-Kun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.3
    • /
    • pp.33-43
    • /
    • 2022
  • South Korea's agricultural nitrogen balance and phosphorus balance rank first and second, respectively, among OECD countries, and proper nutrient management is required to preserve the water quality of rivers and lakes. This study evaluates the effects of furrow mulching on the reduction of non-point source pollution (NPS) load from a sloped upland. The study site was Wanju-gun, Jeollabuk-do, and the survey period was from 2018 to 2019. The slope of the testbed was 13%, and the soil type was sandy loam. The cropping system consisted of maize-autumn Chinese cabbage rotation. The testbed was composed of bare soil (bare), control (Cont.), furrow vegetation mulching (FVM), and furrow nonwoven fabric mulching (FFM) plots. Runoff was collected for each rainfall event with a 1/100 sampler, and the NPS load was calculated by measuring the concentrations of SS, T-N, and T-P. The NPS load was then analyzed for the entire monitoring and crop cultivation periods. During the monitoring period, the effect of reducing the NPS load was 1.5%~44.5% for FVM and 13.1%~55.2% for FFM. During the crop cultivation period, it was 1.2%~80.5% for FVM and 27.0%~65.1% for FFM, indicating that FFM was more effective than FVM. As the NPS load was fairly high during the crop conversion period, an appropriate management method needs to be implemented during this period.

The characteristics of discharged non-point pollutants on Hwa-sung lake inflow streams on precipitation (화성호 유입하천의 강우시 비점오염물질 유출특성)

  • Lee, Sang Eun;Choi, I Song;Lee, In Ho;Hong, Dae Byuk;Oh, Jong Min
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.5
    • /
    • pp.651-661
    • /
    • 2011
  • The purpose of this study is to estimate the characteristics and pollutant loadings of non-point pollutants that flowed in the streams on precipitation for pollutant loading reduction of Hwa-sung lake inflow streams. Although it has been made an effort to improve the water quality of Hwa-sung basin through the strategies for the preservation of water quality, it is shown that the water quality is not greatly improved. Because it has been industrialized and urbanized near Hwa-sung basin so that it is difficult to reduce the water pollution due to the increase in pollutant loadings of point and non-point sources. In this study, it is investigated the outflow characteristics of non-point pollutants that discharged with storm runoff and estimated the effect of runoff on Hwa-sung basin. The final goal of this study is to utilize the basic information for proper management and strategies of non-point sources on Hwa-sung basin. At the result of inflow streams, Ja-an stream that has the greatest pollutant loadings on precipitation is strongly influenced on the water quantity of Hwa-sung basin. On the other hand, it is shown that Nam-yang stream is strongly influenced on the SS concentration of Hwasung basin among them. Also, all streams; Nam-yang, Ja-ahn, Ah-eun stream; has the degree of slope more than or near 1 in the correlation results so that they have strong pollutant loading impact and the concentration of SS is the highest among other pollutants. So, specific studies on initial rain phenomena are more necessary to manage the pollutants economically. Also, the proper control of SS concentration is required to manage the effluent pollutants effectively on precipitation. So, it is necessary to consider the strategies for non-point pollutants as well as point pollutants when the new management is imposed to reduce the pollutant load for improvement of Hwa-sung basin.