• Title/Summary/Keyword: Non-paretic side

Search Result 26, Processing Time 0.018 seconds

Effect of Paretic and Non-paretic Side Spine Taping on Balance Ability in Patients with Stroke

  • Cho, Yonghun;Park, Shinjun;Kim, Soonhee
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.10 no.2
    • /
    • pp.1779-1784
    • /
    • 2019
  • Background: A number of researchers have attempted to improve the balance of stroke patients, however there is still a question as to whether taping is effective in increasing balance. Objective: To determine the effect of paretic and non-paretic side taping on the balance ability in patients with stroke. Design: A single-blind randomized controlled trial Methods: This randomized single-blind controlled clinical trial with a repeated measures study included 45 subjects who were randomly assigned to paretic side taping groups (n=15), non-paretic side taping groups (n=15), and trunk exercise groups (n=15). Trunk exercise and paretic side taping groups had taping on the paralyzed erector spinae, while the non-paretic side taping group had taping on the non-paralyzed erector spinae. Trunk exercises were performed for 30 minutes to promote core muscles. The balance ability measured the center of pressure movement (paretic side, non-paretic side,forward, backward, limit of stability) in the sitting position. All measurements were evaluated using BioRescue. Results: All three groups showed significant increase in all variables after 4 weeks. The paretic and non-paretic side taping groups had a significant increase in all variables after 30 min of attachment. However, there was no significant difference among the three groups. Conclusions: Paralysis and non-paralysis taping improved the balance ability of patients with stroke in an immediate effect of 30 min. However, after 4 weeks of intervention, taping with trunk exercise did not differ from single trunk exercise. In future studies, various analyses need to be conducted through more diverse evaluations.

Effect of Paretic Side and Non-paretic Side Arm Training on Trunk Control and Upper Limb Functions in Stroke Patients

  • Kim, Teahyun;Son, Yuhyeon;Park, Shinjun
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.10 no.1
    • /
    • pp.1734-1738
    • /
    • 2019
  • Background: Stroke patients usually have arm weakness, which affects trunks and arms. Objective: To investigate the effects of paretic side and non-paretic side arm training on trunk control and upper limb functions. Design: Randomized Controlled Trial (single blind). Methods: Twenty patients with stroke in hospital were enrolled in the study. Twenty subjects were randomly assigned to paretic side arm training group (PATG, n = 10) or non-paretic side arm training group (NATG, n = 10). Trunk impairment scale (TIS) was used for trunk control, and box and block test (BBT) was used for upper limb function. Training was conducted for 4 weeks. Results: PATG showed significant difference in TIS (static balance, dynamic balance, coordination, total score) and BBT. NATG showed significant differences in static balance, and dynamic balance and total score except for coordination and BBT. PATG also showed a more significant difference in BBT and coordination and total score than NATG. Conclusions: The arm training performed on the paretic side are more effective than those performed on the non-paretic side in improving both upper limb function and trunk control in stroke patients.

Effects of Fatigue in the Non-paretic Plantarflexor on the Activities of the Lower Leg Muscles during Walking in Chronic Stroke Patients (만성 뇌졸중 환자의 비마비측 발바닥굽힘근 근피로가 보행 시 양측 하지 근육의 활성도에 미치는 영향)

  • Lee, Jae-Woong;Koo, Hyun-Mo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.14 no.3
    • /
    • pp.127-133
    • /
    • 2019
  • PURPOSE: The aim of this study was to obtain detailed and quantified data concerning the effects of plantarflexor fatigue induced to the non-paretic side on muscle activities of the bilateral lower extremities during walking in chronic stroke patients. METHODS: In this study, chronic stroke patients were evaluated for six months after the onset of stroke. To induce the non-paretic plantarflexor fatigue, 20 chronic stroke patients were asked to perform their given fatigue affecting assignments, which were presented in a forced contraction fatigue test method, until the range of motion of the plantarflexor was reduced to less than 50%. The muscle activities of the rectus femoris, tibialis anterior and gastrocnemius in the paretic and non-paretic lower extremities were measured using a wireless surface EMG before and after muscle fatigue induction. RESULTS: The findings showed that after plantarflexor fatigue was induced on the non-paretic side, a significant decrease in muscle activities of the rectus femoris on the paretic side was noted (p<.05). The muscle activities of the tibialis anterior and gastrocnemius were also observed to decrease, but, these results were not statistically significant (p>.05). In the non-paretic side, there was a significantly decrease in the muscle activities of the rectus femoris, tibialis anterior, and gastrocnemius (p<.05). CONCLUSION: These finding suggest that the muscle fatigue of the non-paretic plantarflexor affects not only the muscle activity of the ipsilateral lower extremity but also the muscles activity of the contralateral lower extremity. This highlights the necessity of performing exercise or training programs that do not cause muscle fatigue in clinical aspects.

The Effects of Fatigue in the Non-Paretic Plantarflexor Muscle on Spatial and Temporal Gait Parameters during Walking in Patients with Chronic Stroke (만성 편마비 환자의 비마비측 발바닥굽힘근 근피로가 시·공간적 보행변수에 미치는 영향)

  • Lee, Jae-Woong;Koo, Hyun-Mo
    • PNF and Movement
    • /
    • v.16 no.3
    • /
    • pp.355-363
    • /
    • 2018
  • Purpose: The purpose of this study was to obtain detailed and quantified data concerning the effects of plantarflexor muscle fatigue induced in the non-paretic side on the spatial and temporal gait parameters of the bilateral lower extremities during walking in stroke patients. Methods: This study was conducted on 20 patients with chronic stroke. The load contraction fatigue test was applied to induce muscle fatigue in the non-paretic plantarflexor muscle. Step length, stride length, double support, gait velocity and cadence, and functional ambulatory profile (FAP) score in the bilateral lower extremities were measured using a gait analysis system in order to investigate changes in temporal and spatial gait parameters caused by muscle fatigue on the non-paretic side. The statistical significance of the results was evaluated using a paired t-test. Results: A review of the results for gait parameters revealed a significant increase in double support (p<0.05) and a significant decrease in step length, stride length, gait velocity and cadence, and FAP score (p<0.05). Conclusion: These results indicate that the muscle fatigue in the non-paretic side of the stroke patients also affected the paretic side, which led to a decrease in gait functions. This implies a necessity to perform exercise or training programs in a range of clinical aspects not causing muscle fatigue.

Pulmonary Function Index Comparisons Depending on Various Postures of Stroke Patients

  • Lee, Kyung-Soo;Lee, Myung-Mo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.14 no.1
    • /
    • pp.43-51
    • /
    • 2019
  • PURPOSE: To prevent secondary complications from decreased pulmonary functions and promote neurological recovery, identification of respiratory capacity change patterns depending on different postures of stroke patients and investigation of their properties are needed for active rehabilitation. Therefore, this study was conducted to investigate the changes in vital capacity in response to different positions and to implement the results as clinical data. METHODS: A respiratory function test was administered to 52 patients with stroke in the sitting, supine, paretic side lying, and non-paretic side lying positions. Pulmonary function indexes used for comparison were forced vital capacity (FVC), forced expiratory volume at 1 second (FEV1), forced expiratory flow 25-75% (FEF 25-75%), and maximum voluntary ventilation (MVV). One-way repeated ANOVA was used for analysis, and post hoc analysis was conducted using least significant difference (LSD). RESULTS: All pulmonary function indexes were measured in the order of sitting, paretic side lying, supine, and non-paretic side lying positions. Excluding the FEF25-75% and MVV of the supine compared with the paretic side lying position, all other pulmonary function indexes differed significantly (p<.05). CONCLUSION: There are differences in pulmonary function indexes depending on different postures of stroke patients, and the study showed that the non-paretic side lying position yielded the greatest effect on lung ventilation mechanisms. Based on these results, appropriate postures need to be considered during physical therapy interventions for stroke patients.

Comparison of Upper Extremity Muscle Activity between Stroke Patients and Healthy Participants while Performing Bimanual Tasks

  • Namwoo Kim;Sungbae Jo;Kyeong Bae;Changho Song
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.4
    • /
    • pp.526-534
    • /
    • 2022
  • Objective: The purpose of this study was to compare muscle activities of stroke patients and healthy participants during bimanual tasks. Design: A cross sectional study. Methods: A total of 25 participants (13 hemiparetic stroke patients and 12 healthy participants) were recruited. The muscle activities using electromyogram (EMG) during bimanual tasks were collected from the following muscles: extensor carpi radialis longus (ECRL), biceps brachii (BB), and triceps brachii (TB). The bimanual tasks included eight tasks consisted of (1) raising the wrists up and down, (2) supinating and pronating the palms, (3) touching the shoulder with fingertips, (4) drawing vertical dot, (5) reaching for a cup and bring it in to drink, (6) drawing a circle outward and (7) inward, and (8) grasping the fingers. The EMG data collected from the muscles of paretic and non-paretic sides of stroke patients and the average from both sides of healthy subjects were normalized and compared after calculating the percentage of maximal isometric voluntary contraction. Results: The ECRL, BB and TB of the paretic side of the stroke patients showed relatively greater muscle activity compared to the non-paretic side as well asaverage of the healthy subject duringall tasks (p<0.05). In addition, the ECRL showed the highest muscle activity during most of the tasks. All of the non-paretic side musclesfrom stroke patients showed higher muscle activity compared to those of healthy subjects. Conclusions: The current study showed that muscle activities of upper extremity varied between paretic and non-paretic sides of stroke patients during bimanual tasks. Interestingly, the non-paretic side muscle activities were also different from those of normal participants.

The Relationship Between Asymmetrical Weight Bearing and Bone Mineral Density in Chronic Hemiplegic Limbs

  • Shin, Hwa-Kyung;Kim, Tae-Ho
    • Physical Therapy Korea
    • /
    • v.16 no.4
    • /
    • pp.31-36
    • /
    • 2009
  • Hemiplegia-induced immobilizatoin and reduction of mechanical loading in chronic stroke limbs are common cause of disuse osteoporosis. The purpose of this study was to investigate the effects of asymmetrical weight bearing on the loss of bone mineral in the individual with chronic stroke. Sixteen hemiplegic patients with strokes were evaluated. The measurements of bone mineral density (BMD) were evaluated with the quantitative ultrasound system on the calcaneus region of the paretic and non-paretic side. Plantar pressure was measured using the Mat-Scan system. The paretic side showed significantly smaller values in the T-score of BMD, and peak value of plantar pressure, which included forefoot, midfoot, and hindfoot, than the non-paretic side (p<.05). Results from the pearson correlation analysis showed statistically significant correlation between the BMD difference and the peak-pressure difference of midfoot pressure (p<.05). This finding indicated that BMD loss depended on decrease of body weight born on the paretic leg.

  • PDF

Variations in Stroke Patients' Muscle Activity during Head Rotation in Non-Paretic-Side Weight Bearing

  • Lee, Kwan-Sub;Choe, Han-Seong;Lee, Byung-Joo
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.3
    • /
    • pp.159-163
    • /
    • 2015
  • Purpose: This study aimed to determine the interaction among the neck, trunk, and lower extremities on the non-paretic side in head rotation along with non-paretic-side weight shifting of stroke patients. To compare stroke patients' ability to control posture through muscle activity variation related to pertubation during head rotation along with the non-paretic limb. Methods: We tested 15 hemiplegic patients and 15 normal individuals. Each group's muscle activity was measured by electromyography in neutral head position and head rotation position. We compared each group's resu lt based on measured values in patients' non-paretic neck muscles, trunk muscles, and lower limbs muscles activation. Results: The study showed that muscle activity increased in the sternocleidomastoid muscle (102.26%, 53.00%), splenius capitis muscle (97.93%, 54.93%), erector spinae muscle (241.00%, 127.60%), external oblique abdominal muscle (256.66%, 152.00%), and internal oblique abdominal muscle (252.80%, 152.6%), peroneus longus muscle (117.53%, 137.13%) and gastrocnemius muscle (119.06%, 137.20%), while the results for the sternocleidomastoid muscle, splenius capitis muscle, erector spinae muscle, external oblique abdominal muscle, internal oblique abdominal muscle, peroneus longus muscle, and gastrocnemius muscle showed a statistically significant difference (p<0.05). Conclusion: It is hard for stroke patients to engage in normal movement control under suggested conditions because of the insufficient movement against gravity on the stroke patient's non-paretic side and impaired cooperative patterns. To solve these problems, patients need their bodies to improve through effective movement, resulting in advanced control of their effective and functional activity.

Effects of Applying a Vibration Stimulation to Paretic Side and Non-Paretic Side on Balance and Gait in Stroke Patients: a Pilot Study

  • Jeong, Ho Jin;Park, Sung Hwan;Jeon, Jong Yun;Kim, Byeong Geun
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.5
    • /
    • pp.193-197
    • /
    • 2022
  • Purpose: The purpose of this pilot study was to assess the feasibility of a proposed study "To investigate the effects of applying a vibration stimulation to the paretic and non-paretic sides on balance and gait in stroke patients" before proceeding with the main study. Methods: A total of 30 patients who had suffered a stroke and who met the selection criteria participated in this study. However, only 14 patients completed the study. The study subjects were randomly assigned to vibration stimulation on either both sides (B group) or the paralyzed side (P group). The interventions were applied for six weeks. The patients were assessed using the Berg balance scale (BBS), Timed up and go (TUG), 10-meter walk (10 MW), and 6-minute walk (6 MW) tests. Results: There was a significant difference before and after the application of vibration stimulation in the BBS, TUG, 10MW, and 6 MW tests in the B group (p<0.05). Similarly, there was also a significant difference observed in the 10 MW and 6 MW tests in the P group (p<0.05). The difference between the two groups was not significant in the BBS, TUG, 10 MW, and 6 MW tests (p>0.05). Conclusion: This pilot study suggests that it would be feasible to conduct a large-scale randomized controlled trial (RCT) to examine the effects of applying a vibration stimulation to the paretic and non-paretic sides, on the balance and gait in stroke patients.

A comparison of the Effects on Abdominal Muscles between the Abdominal Drawing-in Maneuver and Maximal Expiration in Chronic Stroke Patients (만성뇌졸중 환자의 최대 호기와 배 안으로 밀어 넣기가 복부근육두께에 미치는 효과)

  • Seo, Dong-Kwon;Kim, Ji-Seon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.10 no.4
    • /
    • pp.33-38
    • /
    • 2015
  • PURPOSE: Although the abdominal drawing-in maneuver is commonly used in clinical training for trunk stability, performing this procedure in stroke patients is difficult; instead, maximal expiration can be much easily performed in stroke patients. In the present study, we first aimed to demonstrate the effects of the abdominal drawing-in maneuver and maximal expiration on trunk stability in stroke patients. Moreover, we compared the thickness of the transverse abdominal, internal oblique, and external oblique muscles on the paretic and non-paretic sides. METHODS: We used ultrasonography to measure the change in the thickness of the transverse abdominal, internal oblique, and external oblique muscles on the paretic and non-paretic sides at rest, while performing the abdominal drawing-in maneuver, and while performing maximal expiration in 23 stroke patients. The ratio of muscle thickness between different conditions was estimated and included in the data analysis (abdominal drawing-in maneuver / at rest and, maximal expiration / at rest). RESULTS: The ratio of the thickness of the transverse abdominal, internal oblique and external oblique muscles during maximal expiration was significantly different on the paretic side (p < 0.05). The ratio of muscle thicknesses on the non-paretic side was greater during maximal expiration than during the abdominal drawing-in maneuver, although this difference was not significant (p > 0.05). CONCLUSION: Our results suggest that maximal expiration more effectively increased the abdominal muscle thickness on the paretic side. Hence, we recommend the application of maximal expiration in clinical trunk stability training on the paretic side of stroke patients.