• Title/Summary/Keyword: Non-parametric Analysis

Search Result 512, Processing Time 0.026 seconds

A NEW NON-PARAMETRIC APPROACH TO DETERMINE PROPER MOTIONS OF STAR CLUSTERS

  • PRIYATIKANTO, RHOROM;ARIFYANTO, MOCHAMAD IKBAL
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.271-273
    • /
    • 2015
  • The bulk motion of star clusters can be determined after careful membership analysis using parametric or non-parametric approaches. This study aims to implement non-parametric membership analysis based on Binned Kernel Density Estimators which takes into account measurements errors (simply called BKDE-e) to determine the average proper motion of each cluster. This method is applied to 178 selected star clusters with angular diameters less than 20 arcminutes. Proper motion data from UCAC4 are used for membership determination. Non-parametric analysis using BKDE-e successfully determined the average proper motion of 129 clusters, with good accuracy. Compared to COCD and NCOVOCC, there are 79 clusters with less than $3{\sigma}$ difference. Moreover, we are able to analyse the distribution of the member stars in vector point diagrams which is not always a normal distribution.

Spectral analysis of random process

  • Akizuki, Kageo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.13-20
    • /
    • 1994
  • The spectrum estimation methods of random processes are expressed in this paper. Beginning with the basic theory, non-parametric and parametric methods are overviewed. As to non-parametric method, numerical calculation method is also discussed. As to parametric method, AR model is a very famous and effective model representing random process. Estimation methods of AR parameters which have been proposed are mentioned here. Wavelet analysis is a recently interested technique in signal processing. An application of wavelet analysis is also shown.

  • PDF

Slope Displacement Data Estimation using Principal Component Analysis (주성분 분석기법을 적용한 사면 계측데이터 평가)

  • Jung, Soo-Jung;Kim, Yong-Soo;Ahn, Sang-Ro
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1358-1365
    • /
    • 2010
  • Estimating condition of slope is difficult because of nonlinear time dependency and seasonal effects, which affect the displacements. Displacements and displacement patterns of landslides are highly variable in time and space, and a unique approach cannot be defined to model landslide movements. Characteristics of movements are obtained by using a statistical method called Principal Component Analysis(PCA). The PCA is a non-parametric method to separate unknown, statistically uncorrelated source processes from observed mixed processes. In the non-parametric approaches, no physical assumptions of target systems are required. Instead, since the "best" mathematical relationship is estimated for given data sets of the input and output measured from target systems. As a consequence, non-parametric approaches are advantageous in modeling systems whose geomechanical properties are unknown or difficult to be measured. Non-parametric approaches are consequently more flexible in modeling than parametric approaches. This method is expected to be a useful tool for the slope management of and alarm systems.

  • PDF

A Research of the Reliability Analysis and Application Method Based on Non-parametric Statistics Using Field Data (야전 운용자료를 이용한 비 모수 통계 기반의 신뢰도 분석 기법 및 활용 방안 연구)

  • Na, Il-Yong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.594-600
    • /
    • 2010
  • In this paper, we introduced non-parametric statisticals method that could analyse the field data and proposed application ways such as repair-part demand forcasting, MTBF estimation and trend analysis, identity comparison with two populations using the analytical results. In addition, we applied that to real field data which has been collected for about ten years from K series tracked vehicle. After that, we compared the results with those using traditional parametric statistical method, and verified the usability of them.

Bootstrap simulation for quantification of uncertainty in risk assessment

  • Chang, Ki-Yoon;Hong, Ki-Ok;Pak, Son-Il
    • Korean Journal of Veterinary Research
    • /
    • v.47 no.2
    • /
    • pp.259-263
    • /
    • 2007
  • The choice of input distribution in quantitative risk assessments modeling is of great importance to get unbiased overall estimates, although it is difficult to characterize them in situations where data available are too sparse or small. The present study is particularly concerned with accommodation of uncertainties commonly encountered in the practice of modeling. The authors applied parametric and non-parametric bootstrap simulation methods which consist of re-sampling with replacement, in together with the classical Student-t statistics based on the normal distribution. The implications of these methods were demonstrated through an empirical analysis of trade volume from the amount of chicken and pork meat imported to Korea during the period of 1998-2005. The results of bootstrap method were comparable to the classical techniques, indicating that bootstrap can be an alternative approach in a specific context of trade volume. We also illustrated on what extent the bias corrected and accelerated non-parametric bootstrap method produces different estimate of interest, as compared by non-parametric bootstrap method.

A Study of Reliability Analysis and Application on Naval Combat System Using Field Critical Failure Data (야전 치명고장자료를 이용한 함정전투체계 신뢰성 분석 및 활용 방안)

  • Kim, Young-Jin;Oh, Hyun-Seung;Choi, Bong-Wan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.4
    • /
    • pp.49-59
    • /
    • 2016
  • Naval combat system developed in-country is progressing at an alarming rate since 2000. ROK navy will be achieved all vessels that have combat system in the near future. The importance of System Engineering and Integrated Logistics Support based on reliability analysis is increasing. However, reliability analysis that everyone trusted and recognized is not enough and applied practically for development of Defense Acquisition Program. In particular, Existing Reliability Analysis is focusing on reliability index (Mean Time Between Failure (MTBF) etc.) for policy decision of defense improvement project. Most of the weapon system acquisition process applying in the exponential distribution simply persist unreality due to memoryless property. Critical failures are more important than simple faults to ship's operator. There are no confirmed cases of reliability analysis involved with critical failure that naval ship scheduler and operator concerned sensitively. Therefore, this study is focusing on Mean Time To Critical Failure (MTTCF), reliability on specific time and Operational Readiness Float (ORF) requirements related to critical failure of Patrol Killer Guided missile (PKG) combat system that is beginning of naval combat system developed in-country. Methods of analysis is applied parametric and non-parametric statistical techniques. It is compared to the estimates and proposed applications. The result of study shows that parametric and non-parametric estimators should be applied differently depending on purpose of utilization based on test of normality. For the first time, this study is offering Reliability of ROK Naval combat system to stakeholders involved with defense improvement project. Decision makers of defense improvement project have to active support and effort in this area for improvement of System Engineering.

Parametric and Non Parametric Measures for Text Similarity (텍스트 유사성을 위한 파라미터 및 비 파라미터 측정)

  • Mlyahilu, John;Kim, Jong-Nam
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.4
    • /
    • pp.193-198
    • /
    • 2019
  • The wide spread of genuine and fake information on internet has lead to various studies on text analysis. Copying and pasting others' work without acknowledgement, research results manipulation without proof has been trending for a while in the era of data science. Various tools have been developed to reduce, combat and possibly eradicate plagiarism in various research fields. Text similarity measurements can be manually done by using both parametric and non parametric methods of which this study implements cosine similarity and Pearson correlation as parametric while Spearman correlation as non parametric. Cosine similarity and Pearson correlation metrics have achieved highest coefficients of similarity while Spearman shown low similarity coefficients. We recommend the use of non parametric methods in measuring text similarity due to their non normality assumption as opposed to the parametric methods which relies on normality assumptions and biasness.

Reliability analysis methods to one-shot device (일회용품의 신뢰성분석 방안)

  • Baik, Jaiwook
    • Industry Promotion Research
    • /
    • v.7 no.4
    • /
    • pp.1-8
    • /
    • 2022
  • There are many one-shot devices that are used once and thrown away. One-shot devices such as firecrackers and ammunition are typical, and they are stored for a while after manufacture and then disposed of after use when necessary. However, unlike general operating systems, these one-shot devices have not been properly evaluated. This study first examines what the government does to secure reliability in the case of ammunition through ammunition stockpile reliability program. Next, in terms of statistical analysis, we show what the reliability analysis methods are for one-shot devices such as ammunition. Specifically, we show that it is possible to know the level of reliability if sampling inspection plan such as KS Q 0001 which is acceptance sampling plan by attributes is used. Next, non-parametric and parametric methods are introduced as ways to determine the storage reliability of ammunition. Among non-parametric methods, Kaplan-Meier method can be used since it can also handle censored data. Among parametric methods, Weibull distribution can be used to determine the storage reliability of ammunition.

Realistic estimation framework of radioactive release distributions into the environment during nuclear power plant accidents

  • Wasin Vechgama;Jaehyun Cho
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3097-3111
    • /
    • 2024
  • Since the level 2 PSA of OPR-1000 was the requirement for regulatory purposes, Cs-137 release estimation was contained as the Nuclear Safety Act of ROK in which the Cs-137 release frequency exceeding 100 TBq was determined to happen less than 1.0E-6 per year after the Fukushima Daiichi Accident. However, Cs-137 release estimation from the conventional level 2 PSA of OPR-1000 provided uncertainty due to dominant accident sequence consideration. Thus, this study aimed to develop systematic methods through the overall framework to quantify realistic uncertainty concerns of radioactive material release using sensitivity and uncertainty analysis methods and apply them to OPR-1000. This framework helped to quantify confidential value for the Cs-137 release under the BEPU approach using both parametric and non-parametric methods to cover both realistic and conservative points. Uncertainty propagation analysis showed the unexpected uncertainty increase of Cs-137 release exceeding 100 TBq. The non-parametric uncertainty analysis provided higher conservative concerns for safety than the realistic concerns in terms of economics when compared with the parametric uncertainty analysis. Wilks' uncertainty analysis showed the importance to consider conservative Cs-137 release in order to reach the higher safety need. Sensitivity analysis showed reasonable relationships between engineering safety parameters with the Cs-137 release.

Behavior of symmetrically haunched non-prismatic members subjected to temperature changes

  • Yuksel, S. Bahadir
    • Structural Engineering and Mechanics
    • /
    • v.31 no.3
    • /
    • pp.297-314
    • /
    • 2009
  • When the temperature of a structure varies, there is a tendency to produce changes in the shape of the structure. The resulting actions may be of considerable importance in the analysis of the structures having non-prismatic members. Therefore, this study aimed to investigate the modeling, analysis and behavior of the non-prismatic members subjected to temperature changes with the aid of finite element modeling. The fixed-end moments and fixed-end forces of such members due to temperature changes were computed through a comprehensive parametric study. It was demonstrated that the conventional methods using frame elements can lead to significant errors, and the deviations can reach to unacceptable levels for these types of structures. The design formulas and the dimensionless design coefficients were proposed based on a comprehensive parametric study using two-dimensional plane-stress finite element models. The fixed-end actions of the non-prismatic members having parabolic and straight haunches due to temperature changes can be determined using the proposed approach without necessitating a detailed finite element model solution. Additionally, the robust results of the finite element analyses allowed examining the sources and magnitudes of the errors in the conventional analysis.