• Title/Summary/Keyword: Non-oriented electrical steel

Search Result 27, Processing Time 0.037 seconds

Finite Element Analysis of BLDC Motor Characteristic according to Magnetic Property Measurement Methods (자성 측정 방법에 따른 BLDC 전동기의 전자계 특성해석)

  • Kim, Ji-Hyun;Ha, Kyung-Ho;Kwon, Oh-Yeoul;Cha, Sang-Yoon;Kim, Jae-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.697-698
    • /
    • 2008
  • This paper deals with finite element characteristic analysis of brushless DC motor according to magnetic property measurement methods. Magnetic property data for non-oriented (NO) electrical steel for electric motors are measured by the Epstein test which is considered as the international standards. Data from Epstein test may result in discrepancy from motor characteristic tests due to innate anisotropic property of NO electrical steel. Finite element analysis were performed for a BLDC motor by various measurement methods such as Epstein test, Ring test and single sheet test (SST), and calculated results were compared with considering anisotropic property conditions.

  • PDF

Iron Loss Analysis of a Permanent Magnet Rotating Machine Taking Account of the Vector Hysteretic Properties of Electrical Steel Sheet

  • Yoon, Heesung;Jang, Seok-Myeong;Koh, Chang Seop
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.165-170
    • /
    • 2013
  • This paper presents the iron loss prediction of rotating electric machines taking account of the vector hysteretic properties of electrical steel sheet. The E&S vector hysteresis model is adopted to describe the vector hysteretic properties of a non-oriented electrical steel sheet, and incorporated into finite element analysis (FEA) for magnetic field analysis and iron loss prediction. A permanent magnet synchronous generator is taken as a numerical model, and the analyzed magnetic field distribution and predicted iron loss by using the proposed method is compared with those from a conventional method which employs an empirical iron loss formula with FEA based on a non-linear B-H curve. Through the comparison the effectiveness of the presented method for the iron loss prediction of the rotating machine is verified.

Effect of SRA on Hysteresis and Eddy Current Components of Iron Loss in Non-Oriented Steels (무방향성 전기 강판 철손의 자기 이력 손실과 와전류 손실에 미치는 SRA의 영향)

  • 송창열;강이국;신용덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.208-211
    • /
    • 1995
  • This proper focuses on results of relative permeability(${\mu}$$\sub$r/), core loss(W) and magnetic induction [B] measurements on some of the most commonly used core materials(PN-18, 20, 30, 60, Pohang Iron '||'&'||' Steel Co., Ltd.) In case of Stress Relief Annealing(SRA). Results of magnetic induction[B] showed weak variations but core lass reduced strongly after SRA Core loss reduced from 3.071 ∼7.819(W/kg) and 11.377~3.988[W/kg] to 2.88~5.492[W/kg] and 1.213~2.134[W/kg] at 1.5[T] 50 Hz and 1.0 [T] 50Hz respectively after SRA. This SRA process leads to significant changes In magnetic properties and core loss of non-oriented silicon steel sheet.

  • PDF

A Study on the Design of High Efficiency Induction Motor by Grain-oriented Magnetic Cores (방향성 자기재료에 의한 유도전동기의 효율향상설계에 관한 연구)

  • 황영문;이인칠;안진우;박한웅
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.3
    • /
    • pp.173-181
    • /
    • 1989
  • A split-phase induction motor with asymmetrical magnetizing reactance axes develops starting torque and its efficiency can be high under certain conditions. In this paper, one method of producing the asymmetry of magnetizing reactance axes is described. The grain-oriented silicon steel core is used to produce the asymmetric axes instead of non-oriented silicon steel core which is used in general motors. The optimum design method for the motor is suggested and analyzed. To verify this suggestion, the permanent capacitor run type induction motors are designed to be driven at balanced condition by its asymmetrical effect, and then the oscillating torque due to the asymmetry of motor structures are analyzed. Tests of the sample motor have shown good performance comparable to ordinary types. This motor structure can be used where high effciency and reliability are required, and also the amount of core materials can be reduced due to its high permeability.

  • PDF