• 제목/요약/키워드: Non-oriented electrical steel

검색결과 27건 처리시간 0.039초

전기강판의 벡터 자기특성 모델링을 위한 개선된 E&S Vector Hysteresis Model (Improved E&S Vector Hysteresis Model for the Precise Modeling of Vector Magnetic Properties of Electrical Steel Sheet)

  • 송민호;윤희성;고창섭
    • 전기학회논문지
    • /
    • 제60권9호
    • /
    • pp.1684-1692
    • /
    • 2011
  • Recently, several vector hysteresis models such as vector Preisach, vector Jiles-Atherton and dynamic E&S model have been proposed to describe vector magnetic properties of electrical steel sheets. However, it is still difficult to find an adequate vector hysteresis model in finite element application for both the Non-oriented and Grain-oriented electrical steel sheets under alternating and rotating field conditions. In this paper, an improved E&S vector hysteresis model is suggested to describe the vector magnetic properties of both Non-oriented and Grain-oriented electrical steel sheets under various magnetic field conditions including alternating and rotating magnetic field conditions. The validity of the proposed model is tested through comparisons with the experimental results under various magnetic field conditions.

이방향 여자형 SST를 이용한 이방성 전기강판의 인가자계 방향에 따른 2차원 자계특성 측정 (Measurement of 2 Dimensional Magnetic Property of Grain-oriented Electrical Steel Sheet According to Exciting Field Direction using SST with 2 Axes Excitation)

  • 음영환;김홍정;홍선기;신판석;고창섭
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권5호
    • /
    • pp.250-257
    • /
    • 2006
  • It is well known that Grain-oriented electrical steel sheets have two dimensional magnetic properties according to the direction of exciting field such as non-linear phase difference between magnetic flux density and magnetic field intensity vectors, different iron loss and permeability even when an alternating magnetic field is applied. The measurement and application of the two dimensional magnetic properties of the Grain-oriented electrical steel sheets, therefore, are very important for the design and precise performance analysis of electric machines made of them. As the direction of exciting field changes, in this paper, the two dimensional magnetic properties of a Grain-oriented electrical steel sheet, i.e., non-linear B-H curves, phase difference between B and H, and iron loss characteristics, are measured using SST(Single Sheet Tester) which has two axes excitation. The measured results are presented in two ways: using $(B,\theta_B)$ method and using hysteresis loops along rolling and transverse directions, respectively.

Effect of Material Properties on Core Loss in Switched Reluctance Motor using Non-Oriented Electrical Steels

  • Kartigeyan, J.;Ramaswamy, M.
    • Journal of Magnetics
    • /
    • 제22권1호
    • /
    • pp.93-99
    • /
    • 2017
  • The effort attempts to investigate the influence of various non-oriented electrical steel sheets on the core loss of a switched reluctance motor (SRM). The core loss of the motor inherits a strong correlation with flux density and permeability of the material. The study involves the use of laminated 2.7 % high silicon steel suitable for the motor in view of its higher flux density and lower core loss. The accurate prediction of core loss leaves way to suggest measures for improving the performance of the SRM. The dynamic simulation measurements of a 1.5 kW, three-phase 12/8 SRM involve the finite element method (FEM) and use the data obtained experimentally from Epstein frame. The closeness of the simulated and hardware results obtained with laminations of M400-50A, DI MAX-M19 and DI MAX-M15 both for the stator and rotor, espouse a greater significance to the findings in terms of the core loss density and forge new dimensions for its use in the drive industry.

전기강판의 회전자계 하에서의 2차원 자계특성 측정 (Measurement of Two Dimensional Magnetic Properties of Electrical Steel Sheets under Rotating Magnetic Fields)

  • 음영환;홍선기;신판석;고창섭
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권12호
    • /
    • pp.617-622
    • /
    • 2006
  • It is necessary to measure precisely the magnetic characteristics of electrical steel sheets under rotating magnetic fields, to obtain an accurate numerical performance analysis of electric machines made of electrical steel sheets. In this paper, the two dimensional magnetic characteristics of an electrical steel sheet are measured and explained under rotating magnetic fields using a two-axes-excitation type single sheet tester (SST). Through experiments, the magnetic properties, under rotating magnetic fields, of a non-oriented and grain oriented electrical steel sheet were measured respectively. In addition, the iron losses due to not only the alternating magnetic fields, but also rotating magnetic fields were measured. These experimentally measured results can evidently be applied to the analysis of iron losses in electrical machines.

전기강판 특성을 활용한 유니버셜 모터의 효율 개선 (Efficiency Improvement based on New Non-oriented Electrical Steel developed for Universal Motor)

  • 심호경;김교성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.890-891
    • /
    • 2011
  • This paper presents efficiency improvement of a universal motor used in a vacuum cleaner. The transient computation is carried out by employing finite element analysis with nonlinear material curves. Working point of magnetic field is investigated and operating frequencies are analyzed using harmonics analysis. New non-oriented electrical steel is developed for the motor regarding permeability and iron loss at the frequencies. Accordingly, new electrical steel is applied to the motor, which leads to improve efficiency of the motor.

  • PDF

전기강판의 자기특성 측정을 위한 2방향 여자 형 Single Sheet tester 개발 (Double-Excitation Type Single Sheet Tester for the Measurement of the Magnetic Characteristics of the Electrical Steel Sheets)

  • 김홍정;고창섭;홍선기;신판석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권10호
    • /
    • pp.461-469
    • /
    • 2005
  • In this paper, a double-excitation type single sheet tester is developed to measure the magnetic characteristics of the electrical steel sheets. The developed system has the uniform magnetic field area of 20$\times$20mm$^{2}$, and can be applied to the measurement of the magnetic characteristics of the Non-oriented and Grain oriented electrical steel sheets. In the developed system, the magnetic flux density and magnetic field intensity are measured by using B-coil and H-coil, respectively. The B-coil has 1 turn search coil for each direction, and H-coil has 640 and 640 turns for rolling direction and transverse direction on the Im thickness Glass-Epoxy basement, respectively. Through experiments, it Is shown that the system can measure the magnetic characteristics up to 1.87 of magnetic flux density in the rolling direction in case of the Grain oriented electrical steel sheet. The measured results are compared with those measured in Okayama university, .Japan.

경량전철 추진용 영구자석 동기전동기의 고정자 철손 저감 연구 (A study on the Reduction of the Stator iron loss on Permanent Magnet Synchronous Motor for Light Railway Transit Propulsion System)

  • 박찬배;이형우;이병송
    • 한국철도학회논문집
    • /
    • 제15권4호
    • /
    • pp.376-380
    • /
    • 2012
  • IPMSM의 구동 중에 발생되는 철손은 코어 재료 특성에 의해 크게 좌우되며, 일반적으로 회전형 전동기에서는 모든 자속의 흐름 방향으로 자기적 특성이 동일한 무방향성 전기강판이 코어 재료로 사용된다. 무방향성 전기강판과 비교하여 방향성 전기강판은 자속의 흐름 방향으로의 자기적 특성이 우수한 장점을 가지고 있다. 따라서 본 연구에서는 IPMSM의 철손을 저감시키기 위하여 코어 재료로써 무방향성 전기강판과 방향성 전기강판을 동시에 사용하는 구조를 제안하였다. IPMSM의 고정자에 자속 흐름의 방향으로 가공된 방향성 전기강판을 이용한 분할 티스 구조를 적용함으로써 기존의 110kW급 IPMSM과 비교하여 거의 40% 정도의 철손 저감 효과를 얻을 수 있었다.

고효율 변압기용 레이저자구 전기강판 개발 (Development of Electrical Steel by Laser Magnetic Domain Refinement for Applying to Transformers of High Energy Efficiency)

  • 권오열;차상윤;김지현;하경호;김재관
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.625-626
    • /
    • 2008
  • The magnetic domain-refining techniques such as ball scratching, laser irradiation and plasma have been developed to reduce the domain wall spacing and thus iron losses in Fe-3%Si grain-oriented silicon steels. In view point of magnetic properties, it was supposed that the locally residual stresses change the magnetoelastic energy of the material and thus the spacing between $180^{\circ}$ domain walls decreases in order to reduce the magnetostatic energy. The effect of laser irradiation on iron loss and magnetostriction reduction for Fe-3%Si grain-oriented steel were investigated. Since the local tensile stresses were induced at the surface of Fe-3%Si steel by the laser irradiation, the minimum iron loss caused by reducing eddy current loss was obtained in spiete of the decrease of permeability by hindering eddy current loss was obtained in spite of the decrease of permeability by hindering the domain wall movement around the induced stress field. Furthermore, the laser treated 3%Si steel has lower magnetostriction as compared to non laser-treated steel and is less sensitive to applying pre-stresses due to the volume reduction of $90^{\circ}$ domain in materials.

  • PDF