• Title/Summary/Keyword: Non-operating Condition

Search Result 148, Processing Time 0.029 seconds

Numerical Study of Performance Variation Under Frost and Non-frost Condition of Refrigerating System in the Refrigerator Truck (냉동탑차용 냉장시스템의 착상 및 무착상 상태에서의 성능변화에 관한 해석적 연구)

  • Kim, Sang-Hun;Myung, Chi-Wook;Cho, Hong-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.11
    • /
    • pp.733-740
    • /
    • 2011
  • To analyze the cooling performance in the refrigerator truck according to frost growth, the analytical model of refrigeration system was developed under frost and non-frost condition using EES. The system performance was analyzed with outdoor temperature, storage temperature, outdoor front air velocity and compressor speed in order to investigate the system performance characteristics with operating conditions. Besides, the system performance under frost condition was compared with that under non-frost condition. As a result, the frost thickness was 0.9 mm when the refrigerating capacity of frost condition was decreased by 30%. The maximum of the system COP was shown at compressor speed of 1500 rpm for non-frost and frost condition, simultaneously. The performance under frost condition was more sensitive to the operating condition compared to that under non-frost condition.

Condition Diagnosis & On-line Monitoring Technology on the Traction Motor for Railway Rolling Stock (철도차량 견인전동기의 상태진단 및 상시감시 기술)

  • Wang, Jong-Bae;Byun, Yeun-Sub;Baek, Jong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.36-39
    • /
    • 2000
  • This paper presents the technology of condition diagnosis & life estimation on insulation system of the traction motor. In the non-destructive methods for diagnosis of coil insulation state, residual dielectric strength is estimated by the D-map which consist of the partial discharge quantity Q and average degradation degree $\Delta$. In the operating history of machine, the N-Y life estimation method is based on the stop-starting numbers and operating times with considering each degradation factor by the thermal, electrical and heat-cycle stress. With the on-line conditioning monitoring on the currents of traction motors, detecting the abnormal operating state due to bearing faults, stator or armature faults, eccentricity related faults and broken rotor bars can be performed.

  • PDF

The Canopy Transparency Coating Study of Cockpit Temperature Effect Verification (조종실 온도 영향성 검증을 위한 캐노피 투명체 코팅 연구)

  • Nam, Yongseog;Kim, Taehwan;Kim, Yunhi;Woo, Seongjo;Kim, Myungho
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.42-45
    • /
    • 2008
  • Under the non-operating exposure condition in the hot area, the T-50 cockpit temperature is expected over the requirement according to T-50 environmental criteria. So it is necessary to protect the cockpit from the high temperature condition during the non-operating exposure because the high temperature of the cockpit may result in the cockpit equipment malfunction. In this study, the transparency coating is selected as the method for protecting the cockpit from the high temperature exposure and analyzed the effect on the cockpit heat load attenuation. Some kinds of cockpit coating were reviewed and selected and the analysis was performed about the effect before and after coating application under 1% hot day condition based on the T-50 FSD hot soaking test data. The result of analysis show transparency coating is so effective to attenuate the heat load of T-50 cockpit.

  • PDF

A study on the collision between fishing vessel and non fishing vessel using the analysis of written verdict (재결서 분석을 통한 어선-비어선간 충돌사고에 관한 연구)

  • Lee, Yoo-Won;Kim, Seok-Jae;Park, Moon-Kap
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.2
    • /
    • pp.136-143
    • /
    • 2013
  • The analysis of the written verdicts in recent five years was conducted to obtain preventive measures of collision between fishing vessel and non fishing vessel. As a result, a collision much happened in offshore trap for fishing vessel and below 5,000 tons of small and medium class for non fishing vessel. A person involved in a marine accident occupied 68% in sixth class deck officer and small boat operator for fishing vessel and 29% in third class deck officer for non fishing vessel. 90% of the collision happened in a underway by operating state and 84% in sight of one another by visibility state. The systemic radar training was required since 47% of the collisions was occurred on the condition of radar operation in fishing vessel. The main cause of poor lookout was a intensive fishing and poor lookout on movement by radar for fishing vessel and one man watch system and no recognition of one another by radar for non fishing vessel. This result is expected to contribute for the decrease of collision.

IODINE REMOVAL EFFICIENCY IN NON-SUBMERGED AND SUBMERGED SELF-PRIMING VENTURI SCRUBBER

  • Ali, Majid;Yan, Changqi;Sun, Zhongning;Gu, Haifeng;Wang, Junlong;Khurram, Mehboob
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.203-210
    • /
    • 2013
  • The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH) and sodium thiosulphate ($Na2S_2O_3$) in water to remove the gaseous iodine ($I_2$) from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of $0.99{\pm}0.001$ has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber.

Optimization of Operating Condition on Gasification of Ash-free Coal by Using the Sensitivity Analysis of ASPEN Plus (민감도 해석을 통한 무회분 석탄의 가스화 최적 운전조건 도출)

  • Park, Sung-Ho;Jeon, Dong-Hwan;Yun, Sung-Phil;Chung, Seok-Woo;Choi, Ho-Kyung;Lee, Si-Hyun
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.298-305
    • /
    • 2014
  • Ash included in coal can cause environmental pollution and it can decrease efficiency of mass and heat transfer by getting scorched and stick in the facilities operated at high temperature. To solve this problem, a feasibility study on pulverized coal fired power plant and integrated gasification combined cycle (IGCC) using the AFC (Ash-Free Coal) as well as the development to remove the ash from the coal was conducted. In this research, optimization of operating condition was proposed by using sensitivity analysis of ASPEN $Plus^{(R)}$ to apply the coal containing under the 200 ppm ash for integrated gasification combined cycle. Particularly, the coal gasification process was classified as three parts : pyrolysis process, volatile matter combustion process and char gasification process. The dimension and operating condition of 1.5 ton/day class non-slagging gasifier are reflected in the coal gasification process model.

Analysis of Drying Efficiency for Circulating and Falling Movements on Indirected Drying Process of Food Waste (음식물류폐기물 간접건조과정에서의 순환 및 낙하이동에 따른 건조효율 평가)

  • Kim, Byung Tae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.4
    • /
    • pp.106-117
    • /
    • 2012
  • Indirected heating dryer is used as one of the food waste treatment technologies for the production of the drier material supplied to the recycling facilities or end user. This study investigated the effect on drying efficiency for the operation of rotating screw with the circulating and falling movements on indirected drying process of food waste. The screw operating condition showed higher drying efficiency despite of the shorter drying time compared to the screw non-operating condition. The moisture content decreased to 14.4% from the initial moisture content of 77.1% after drying 5 hours in the screw operating condition. On the other hand, in the screw non-operating condition, the moisture content decreased slightly to 35.6% after drying 16 hours. During the drying process, variations of the water evaporation rate and particle size showed different tendencies depending on the moisture content regions. In the higher moisture content region above the glue zone(moisture content of about 50%-60%), the particle size increased and the water evaporation rate reached the highest peak. In the range of glue zone, the particle size maximized while the water evaporation rate decreased sharply. In the lower moisture content region below the glue zone, the water evaporation rate and particle size both decreased at the same time. The particle size distribution was widely ranged from 25.0mm to 0.25mm in the screw operating condition while it was narrowly distributed in the screw non-operating condition from 25.0mm to 3.56mm, especially highly concentrated to 25.0mm. It was regarded that the hygroscopic, capillary and gravitational water evaporated more easily from the intra-particle during the circulating and falling movement caused by the rotating of the screw and the difference of the cohesional force of water within intra-particle depending on the moisture content regions. Comparing the effect of the circulating and falling movement on drying efficiency, the water evaporation rates per time and per weight of dry solid in the screw operating condition were higher about 364% and 356%, respectively, than those of the screw non-operating condition.

A Numerical Analysis on Transient Fuel temperatures in a Military Aircraft under Non-operating Ground Static Condition (지상 정적 상태에서의 항공기내 연료온도변화에 대한 수치해석)

  • 김영준;김창녕
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.11-16
    • /
    • 2003
  • A numerical study was performed on the transient fuel temperatures of a military aircraft stationed under non-operating static condition. Numerical calculation was peformed by an explicit method using modified Dufort-Frankel scheme. It was assumed that the non-operating aircraft is subjected to repeated daily cycles of air temperature with the solar radiation and wind speed corresponding to the 1 % hot day ambient condition. And, the aircraft was assumed to be in turbulent flow. The convective heat transfer coefficient for turbulent flow on the flat plate suggested by Eckert was employed to calculate heat transfer between the aircraft surface and the ambience. The energy conservation equation on fuel was used as governing equation for this analysis. As a result of this analysis, the wing tank temperature showed the highest temperature and the largest rate of temperature changes among fuel tanks. The results of this analysis could be used as initial foe] temperatures for analysis of the transient fuel temperatures in various flight missions. Also, this analysis method could be used to analysis and design of an aircraft thermal energy management system.

Operating Pressure Conditions for Non-Explosion Hazards in Plants Handling Propane Gas

  • Choi, Jae-Young;Byeon, Sang-Hoon
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.493-497
    • /
    • 2020
  • Hazardous area classification is designed to prevent chemical plant explosions in advance. Generally, the duration of the explosive atmosphere is used for zone type classification. Herein, IEC code, a quantitative zone type classification methodology, was used to achieve Zone 2 NE, which indicates a practical non-explosion condition. This study analyzed the operating pressure of a vessel handling propane to achieve Zone 2 NE by applying the IEC code via MATLAB. The resulting zone type and hazardous area grades were compared with the results from other design standards, namely API and EI codes. According to the IEC code, the operating pressure of vessels handling propane should be between 101325-116560.59 Pa. In contrast, the zone type classification criteria used by API and EI codes are abstract. Therefore, since these codes could interpret excessively explosive atmospheres, care is required while using them for hazardous area classification design.

Flow simulation and efficiency hill chart prediction for a Propeller turbine

  • Vu, Thi;Koller, Marcel;Gauthier, Maxime;Deschenes, Claire
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.2
    • /
    • pp.243-254
    • /
    • 2011
  • In the present paper, we focus on the flow computation of a low head Propeller turbine at a wide range of design and off-design operating conditions. First, we will present the results on the efficiency hill chart prediction of the Propeller turbine and discuss the consequences of using non-homologous blade geometries for the CFD simulation. The flow characteristics of the entire turbine will be also investigated and compared with experimental data at different measurement planes. Two operating conditions are selected, the first one at the best efficiency point and the second one at part load condition. At the same time, for the same selected operating points, the numerical results for the entire turbine simulation will be compared with flow simulation with our standard stage calculation approach which includes only guide vane, runner and draft tube geometries.