• Title/Summary/Keyword: Non-olfactory receptors

Search Result 6, Processing Time 0.022 seconds

Olfactory receptors in non-chemosensory tissues

  • Kang, NaNa;Koo, JaeHyung
    • BMB Reports
    • /
    • v.45 no.11
    • /
    • pp.612-622
    • /
    • 2012
  • Olfactory receptors (ORs) detect volatile chemicals that lead to the initial perception of smell in the brain. The olfactory receptor (OR) is the first protein that recognizes odorants in the olfactory signal pathway and it is present in over 1,000 genes in mice. It is also the largest member of the G protein-coupled receptors (GPCRs). Most ORs are extensively expressed in the nasal olfactory epithelium where they perform the appropriate physiological functions that fit their location. However, recent whole-genome sequencing shows that ORs have been found outside of the olfactory system, suggesting that ORs may play an important role in the ectopic expression of non-chemosensory tissues. The ectopic expressions of ORs and their physiological functions have attracted more attention recently since MOR23 and testicular hOR17-4 have been found to be involved in skeletal muscle development, regeneration, and human sperm chemotaxis, respectively. When identifying additional expression profiles and functions of ORs in non-olfactory tissues, there are limitations posed by the small number of antibodies available for similar OR genes. This review presents the results of a research series that identifies ectopic expressions and functions of ORs in non-chemosensory tissues to provide insight into future research directions.

Inhaled Volatile Molecules-Responsive TRP Channels as Non-Olfactory Receptors

  • Hyungsup Kim;Minwoo Kim;Yongwoo Jang
    • Biomolecules & Therapeutics
    • /
    • v.32 no.2
    • /
    • pp.192-204
    • /
    • 2024
  • Generally, odorant molecules are detected by olfactory receptors, which are specialized chemoreceptors expressed in olfactory neurons. Besides odorant molecules, certain volatile molecules can be inhaled through the respiratory tract, often leading to pathophysiological changes in the body. These inhaled molecules mediate cellular signaling through the activation of the Ca2+-permeable transient receptor potential (TRP) channels in peripheral tissues. This review provides a comprehensive overview of TRP channels that are involved in the detection and response to volatile molecules, including hazardous substances, anesthetics, plant-derived compounds, and pheromones. The review aims to shed light on the biological mechanisms underlying the sensing of inhaled volatile molecules. Therefore, this review will contribute to a better understanding of the roles of TRP channels in the response to inhaled molecules, providing insights into their implications for human health and disease.

Odorant Receptors Containing Conserved Amino Acid Sequences in Transmembrane Domain 7 Display Distinct Expression Patterns in Mammalian Tissues

  • Ryu, Sang Eun;Shim, Tammy;Yi, Ju-Yeon;Kim, So Yeun;Park, Sun Hwa;Kim, Sung Won;Ronnett, Gabriele V.;Moon, Cheil
    • Molecules and Cells
    • /
    • v.40 no.12
    • /
    • pp.954-965
    • /
    • 2017
  • Mammalian genomes are well established, and highly conserved regions within odorant receptors that are unique from other G-protein coupled receptors have been identified. Numerous functional studies have focused on specific conserved amino acids motifs; however, not all conserved motifs have been sufficiently characterized. Here, we identified a highly conserved 18 amino acid sequence motif within transmembrane domain seven (CAS-TM7) which was identified by aligning odorant receptor sequences. Next, we investigated the expression pattern and distribution of this conserved amino acid motif among a broad range of odorant receptors. To examine the localization of odorant receptor proteins, we used a sequence-specific peptide antibody against CAS-TM7 which is specific to odorant receptors across species. The specificity of this peptide antibody in recognizing odorant receptors has been confirmed in a heterologous in vitro system and a rat-based in vivo system. The CAS-TM7 odorant receptors localized with distinct patterns at each region of the olfactory epithelium; septum, endoturbinate and ectoturbinate. To our great interests, we found that the CAS-TM7 odorant receptors are primarily localized to the dorsal region of the olfactory bulb, coinciding with olfactory epithelium-based patterns. Also, these odorant receptors were ectopically expressed in the various non-olfactory tissues in an evolutionary constrained manner between human and rats. This study has characterized the expression patterns of odorant receptors containing particular amino acid motif in transmembrane domain 7, and which led to an intriguing possibility that the conserved motif of odorant receptors can play critical roles in other physiological functions as well as olfaction.

Comprehensive Analysis of Non-Synonymous Natural Variants of G Protein-Coupled Receptors

  • Kim, Hee Ryung;Duc, Nguyen Minh;Chung, Ka Young
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.101-108
    • /
    • 2018
  • G protein-coupled receptors (GPCRs) are the largest superfamily of transmembrane receptors and have vital signaling functions in various organs. Because of their critical roles in physiology and pathology, GPCRs are the most commonly used therapeutic target. It has been suggested that GPCRs undergo massive genetic variations such as genetic polymorphisms and DNA insertions or deletions. Among these genetic variations, non-synonymous natural variations change the amino acid sequence and could thus alter GPCR functions such as expression, localization, signaling, and ligand binding, which may be involved in disease development and altered responses to GPCR-targeting drugs. Despite the clinical importance of GPCRs, studies on the genotype-phenotype relationship of GPCR natural variants have been limited to a few GPCRs such as b-adrenergic receptors and opioid receptors. Comprehensive understanding of non-synonymous natural variations within GPCRs would help to predict the unknown genotype-phenotype relationship and yet-to-be-discovered natural variants. Here, we analyzed the non-synonymous natural variants of all non-olfactory GPCRs available from a public database, UniProt. The results suggest that non-synonymous natural variations occur extensively within the GPCR superfamily especially in the N-terminus and transmembrane domains. Within the transmembrane domains, natural variations observed more frequently in the conserved residues, which leads to disruption of the receptor function. Our analysis also suggests that only few non-synonymous natural variations have been studied in efforts to link the variations with functional consequences.

Insect GPCRs and TRP Channels: Putative Targets for Insect Repellents

  • Kim, Sang Hoon
    • Interdisciplinary Bio Central
    • /
    • v.5 no.3
    • /
    • pp.6.1-6.7
    • /
    • 2013
  • Many insects such as mosquitoes cause life-threatening diseases such as malaria, yellow fever and West Nile virus. Malaria alone infects 500 million people annually and causes 1-3 million death per year. Volatile insect repellents, which are detected through the sense of smell, have long been used to protect humans against insect pests. Antifeed-ants are non-volatile aversive compounds that are detected through the sense of taste and prevent insects from feeding on plants. The molecular targets and signaling path-ways required for sensing insect repellents and antifeedants are poorly understood. Transient Receptor Potential (TRP) Ca2+-permeable cation channels exist in organisms ranging from C. elegans to D. melanogaster and Homo sapiens. Drosophila has 13 family members, which mainly function in sensory physiology such as vision, thermotaxis and chemotaxis. G protein-coupled receptors (GPCRs) initiate olfactory signaling cascades in mammals and in nematodes C.elegans. However, the mechanisms of G protein signaling cascades in insect chemosensation are controversial. In this review, I will discuss the putative roles of G protein-coupled receptors (GPCRs) and Transient Receptor Potential (TRP) channels as targets for insect repellents.

Mammalian Reproduction and Pheromones (포유동물의 생식과 페로몬)

  • Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.10 no.3
    • /
    • pp.159-168
    • /
    • 2006
  • Rodents and many other mammals have two chemosensory systems that mediate responses to pheromones, the main and accessory olfactory system, MOS and AOS, respectively. The chemosensory neurons associated with the MOS are located in the main olfactory epithelium, while those associated with the AOS are located in the vomeronasal organ(VNO). Pheromonal odorants access the lumen of the VNO via canals in the roof of the mouth, and are largely thought to be nonvolatile. The main pheromone receptor proteins consist of two superfamilies, V1Rs and V2Rs, that are structurally distinct and unrelated to the olfactory receptors expressed in the main olfactory epithelium. These two type of receptors are seven transmembrane domain G-protein coupled proteins(V1R with $G_{{\alpha}i2}$, V2R with $G_{0\;{\alpha}}$). V2Rs are co-expressed with nonclassical MHC Ib genes(M10 and other 8 M1 family proteins). Other important molecular component of VNO neuron is a TrpC2, a cation channel protein of transient receptor potential(TRP) family and thought to have a crucial role in signal transduction. There are four types of pheromones in mammalian chemical communication - primers, signalers, modulators and releasers. Responses to these chemosignals can vary substantially within and between individuals. This variability can stem from the modulating effects of steroid hormones and/or non-steroid factors such as neurotransmitters on olfactory processing. Such modulation frequently augments or facilitates the effects that prevailing social and environmental conditions have on the reproductive axis. The best example is the pregnancy block effect(Bruce effect), caused by testosterone-dependent major urinary proteins(MUPs) in male mouse urine. Intriguingly, mouse GnRH neurons receive pheromone signals from both odor and pheromone relays in the brain and may also receive common odor signals. Though it is quite controversial, recent studies reveal a complex interplay between reproduction and other functions in which GnRH neurons appear to integrate information from multiple sources and modulate a variety of brain functions.

  • PDF