• Title/Summary/Keyword: Non-muscle myosin

Search Result 14, Processing Time 0.02 seconds

THE EFFECTS OF FACIAL DENERVATION ON FACIAL MUSCLES AND BONES IN GROWING RABBITS (안면신경절제가 가토의 안면근육 및 안면골에 미치는 영향에 관한 연구)

  • Park, Young Guk;Lee, Ki Soo
    • The korean journal of orthodontics
    • /
    • v.20 no.1
    • /
    • pp.23-45
    • /
    • 1990
  • It is the aim of this study to determine the effects of facial denervation on physiological properties of facial muscles and facial bones in growing rabbits. Experimental animals of fifty two Oryctolagus cuniculus rabbits were employed. Unilateral dissection of facial nerve was carried out on twelve rabbits, bilateral dissection of facial nerve was made on another twelve rabbits and the other twenty rabbits were on unilateral dissection of facial nerve for the histochemical analyses. Six rabbits on the bilateral surgical sham operations and six rabbits of non-intervention served the control groups. EMG records of the orbicularis oris, buccinator and masseter muscles as well as lateral and dorsoventral cephalometric films were taken and analyzed at 0, 1, 2, 5 and 8 weeks respectively. The orbicularis oris, buccinator and masseter muscles of both sides were removed from the animals of the histochemistry group and muscle fibers were classified on the basis of histochemical staining for $\alpha$-GPD, NADH-D and myosin ATPase. EMG activities of orbicularis oris and buccinator muscles were vanished immediately after denervation. Recovery of activities were detected one week after denervation in buccinator and five weeks in orbicularis oris muscles. Histochemical properties of masseter muscles remained as fast glycolytic through the experimental period. Orbicularis oris muscle fibers showed the gradual diminution of size and ratio of the slow oxidative fibers accompanied with atrophy, phagocytosis and vacuolation as well as the augmentation of fast oxidative glycolytic fibers. The buccinator muscle manifested the augmentation of fast oxidative glycolytic fibers at five weeks of experiment. Visual changes in morphology of craniofacial area were not evident, however it variety of subtle changes were apparent from statistical analysis of cephalometric measurements. It is concluded facial nerve regulates the physiological properties of facial muscles and interrelation between the function of the facial muscles and changes of facial bones would be in some degrees.

  • PDF

Molecular Cloning of Novel Genes Specifically Expressed in Snailfish, Liparis tanakae (꼼치, Liparis tanakae에서 특이하게 발현되는 새로운 유전인자의 검색)

  • 송인선;이석근;손진기
    • Development and Reproduction
    • /
    • v.4 no.1
    • /
    • pp.67-77
    • /
    • 2000
  • Snailfish usually lives at the bottom of the sea and showed typical retrogressive change with specialized tissue structures of skin and skeletons. In order to obtain the specific genes of snailfish, highly expressed in the body, we made subtracted cDNA library and analyzed 200 clones. Totally 200 clones were obtained and sequenced, and among them 62 clones were turned out to be homologous to the known gene, i.e., thioesterase (9), myosin (8), creatine kinase (7), skeletal alpha-actin (6), parvalbumin b (5), ribosomal protein (5), type I collagen (3), muscle troponin (3), dopamine receptor (2), histatin (2), and heat shock protein (2), cystatin (1), lectin (1), statherin (1), secretory carrier membrane protein (1), keratin type I (1), desmin (1), chloroplast (1), muscle tropomyosin (1), reticulum calcium ATPase (1), ribonucleoprotein (1). The remaining 138 clones were low homologous or non-redundant genes through Genbank search. Especially 5 clones were novel and specifically expressed in the body tissues of Snailfish by in situ hybridization. Therefore, we analysed these 5 clones to identify the C-terminal protein structures and motifs, and partly defined the roles of these proteins in comparison with the expression patterns by in situ hybridization. C9O-77, about 5000 bp, was supposed to be a matrix protein expressed strongly positive in epithelium, myxoid tissue, fibrous tissue and collagenous tissue. C9O-116, about 1500 bp, was supposed to be a transmembrane protein which was weakly expressed in the fibrous tissue, epithelium tissue, and myxoid tissue, but strong in muscle tissue. C9O-130, about 1200 bp, was supposed to be an intracytoplasmic molecule usually in the epithelial cells. C9O-161, about 2000 bp, was weakly expressed in epithelium, muscle tissue and myxoid tissue, but specially strong in epithelium. C9O-171, about 1000 bp, was supposed to be a transcription factor containing zinc finger like domain, which was intensely expressed in the epithelium, muscle tissue, fibrous tissue, and in collagenous tissue.

  • PDF

Effect of mixed plant-extract powder on the regulation of differentiation and oxidative stress-induced apoptosis in C2C12 cells (식물 추출물 혼합 분말이 C2C12 세포 내 분화 및 산화적 스트레스 유발 세포사멸 조절에 미치는 효과)

  • Se-Eun Park;Dabin Choi;Kyo-nyeo Oh;Hanjoong Kim;Hyungbum Park;Ki-Man Kim
    • Food Science and Preservation
    • /
    • v.31 no.2
    • /
    • pp.298-306
    • /
    • 2024
  • This study evaluated the differentiation and protective effects of mixed plant-extract powder in C2C12 muscle cells. Cells were differentiated into myotubes in 2% horse serum (HS)-containing medium with mixed plant-extract powder (MPEP) for 6 days. Treatment with MPEP increased the expression of myogenin and myosin heavy chain (MHC) protein in cells compared with non-treated cells. Differentiated cells were pretreated with MPEP, and hydrogen peroxide (H2O2). Our results revealed that treatment with MPEP before H2O2 treatment increased cell viability and decreased H2O2-induced lactate dehydrogenase (LDH) and creatine kinase (CK). In addition, MPEP attenuated H2O2-induced upregulation of Bax, downregulation of Bcl-2, and activation of caspase-9 and -3. These results suggest the MPEP can stimulate C2C12 muscle cell differentiation into myotubes and observe the protective effect of mixed plant-extract powder against muscle oxidative stress. In conclusion, MPEP may be useful as a prevention and treatment material for skeletal muscle disease caused by age-related diseases.

Interaction of Porcine Myofibrillar Proteins and Various Gelatins: Impacts on Gel Properties

  • Noh, Sin-Woo;Song, Dong-Heon;Ham, Youn-Kyung;Kim, Tae-Kyung;Choi, Yun-Sang;Kim, Hyun-Wook
    • Food Science of Animal Resources
    • /
    • v.39 no.2
    • /
    • pp.229-239
    • /
    • 2019
  • The objectives of this study were to determine the interaction between porcine myofibrillar proteins and various gelatins (bovine hide, porcine skin, fish skin, and duck skin gelatins) and their impacts on gel properties of porcine myofibrillar proteins. Porcine myofibrillar protein was isolated from pork loin muscle (M. longissimus dorsi thoracis et lumborum). Control was prepared with only myofibrillar protein (60 mg/mL), and gelatin treatments were formulated with myofibrillar protein and each gelatin (9:1) at the same protein concentration. The myofibrillar protein-gelatin mixtures were heated from $10^{\circ}C$ to $75^{\circ}C$ ($2^{\circ}C/min$). Little to no impacts of gelatin addition on pH value and color characteristics of heat-induced myofibrillar protein gels were observed (p>0.05). The addition of gelatin slightly decreased cooking yield of heat-induced myofibrillar protein gels, but the gels showed lower centrifugal weight loss compared to control (p<0.05). The addition of gelatin significantly decreased hardness, cohesiveness, gumminess, and chewiness of heat-induced myofibrillar gels. Further, sodium dodecyl poly-acrylamide gel electrophoresis (SDS-PAGE) showed no interaction between myofibrillar proteins and gelatin under non-thermal conditions. Only a slight change in the endothermic peak (probably myosin) of myofibrillar protein-gelatin mixtures was found. The results of this study show that the addition of gelatin attenuated the water-holding capacity and textural properties of heat-induced myofibrillar protein gel. Thus, it could be suggested that well-known positive impacts of gelatin on quality characteristics of processed meat products may be largely affected by the functional properties of gelatin per se, rather than its interaction with myofibrillar proteins.