• Title/Summary/Keyword: Non-mixture

Search Result 1,055, Processing Time 0.039 seconds

Effects of Estrogen on the Bacterial Uterine Diseases (세균성자궁질환(細菌性子宮疾患)에 있어서 Estrogen 이 미치는 영향(影響)에 관한 연구)

  • Oh, Soo Kak;Oak, Chong Wha
    • Korean Journal of Veterinary Research
    • /
    • v.12 no.1
    • /
    • pp.133-139
    • /
    • 1972
  • Estrous and non-estrous rabbits were inoculated with E. coli or Streptococcus pyogenes, and the mixture of the two organisms, and bacterial count and histopathological studies of uterine horns were made to observe the effects of estrogen on the resistance of the uterus to bacterial infection. The results obtained were summarized as followings; 1. Four hours after inoculation of bactoria into uterine horn, the number of organisms was significantly lower in estrous rabbits than in non-estrous regardless of the kind of organisms inoculated. 2. The highest reduction rate of the organisms among the three bacterial inoculation groups was found in estrous rabbits inoculated with E. coli, and the lowest reduction rate was with Streptococcus pyogenes. 3. Histopathological changes of uterine horns induced five days after bacterial inoculation were observed. In estrous rabbits, a mild inflammatory reaction was found in Streptococcus pyogenes group, but a slight inflammatory reaction and only a negligible inflammatory reaction were observed in mixed bacteria group, and in E. coli group respectively. In non-estrous group, however, a marked inflammatory reaction was observed in Streptococcus pyogenes group, a moderate inflammatory reaction and a slight inflammatory reaction were observed in the mixed bacterial group and E. coli group, respectively.

  • PDF

Critical buckling analyses of nonlinear FG-CNT reinforced nano-composite beam

  • Zerrouki, Rachid;Karas, Abdelkader;Zidour, Mohamed
    • Advances in nano research
    • /
    • v.9 no.3
    • /
    • pp.211-220
    • /
    • 2020
  • This paper investigates the effect of linear and non-linear distribution of carbon nanotube volume fraction in the FG-CNTRC beams on the critical buckling by using higher-order shear deformation theories. Here, the material properties of the CNTRC beams are assumed to be graded in the thickness direction according to a new exponential power law distribution in terms of the carbon nanotube volume fractions. The single-walled carbon nanotube is aligned and distributed in the polymeric matrix with different patterns of reinforcement; the material properties of the CNTRC beams are described by using the rule of mixture. The governing equations are derived through using Hamilton's principle. The Navier solution method is used under the specified boundary conditions for simply supported CNTRC beams. The mathematical models provided in this work are numerically validated by comparison with some available results. New results of critical buckling with the non-linear distribution of CNT volume fraction in different patterns are presented and discussed in detail, and compared with the linear distribution. Several aspects of beam types, CNT volume fraction, exponent degree (n), aspect ratio, etc., are taken into this investigation. It is revealed that the influences of non-linearity distribution in the beam play an important role to improve the mechanical properties, especially in buckling behavior. The results show that the X-Beam configuration is the strongest among all different types of CNTRC beams in supporting the buckling loads.

An experimental study on the burning velocity measurement of natural gas (천연가스의 연소속도 측정에 관한 실험적 연구)

  • Yu, Hyeon-Seok;Han, Jeong-Ok;Bang, Hyo-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.195-201
    • /
    • 1997
  • Static and non-static flame methods were used to measure the laminar burning velocity of methane, ethane and natural gas. The flame slot angle and velocity of unburned gas mixture were determined by Schlieren method and LDV, respectively, for static flame. The diameter of nozzle was selected as 11 mm. The experimental results containing the stretch effect showed that the maximum burning velocities were 41.5 for natural gas, 40.8 for methane and 43.4 cm/sec for ethane on equivalence ratio of 1.1. Constant volume combustion chamber was also used for non-static flame. The propagation process of flame front was visualized by high speed camera during constant pressure. The maximum burning velocity of natural gas was determined as 42.1 cm/sec on equivalence ratio of 1.15.

Breakdown Characteristics of Ar/$N_2$ and Kr/$N_2$ Gas Mixtures with Pressure Variation (압력변화에 따른 Ar/$N_2$및 Kr/$N_2$ 혼합가스의 절연파괴 특성)

  • 이상우;이동인;이광식;김인식;김이국;배영호
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.187-191
    • /
    • 2001
  • In this paper, the ac breakdown characteristics of Ar/$N_2$and Kr/$N_2$gas mixtures with gas pressure range of 58.8~137.3[kPa] under uniform and non-uniform fields were investigated. Summarizing the experimental results, the breakdown voltages of Ar/$N_2$ gas mixtures were decreased with decreasing the mixture ratio of pure $N_2$gas. In case of Ar(85%)/$N_2$(15%) and Ar(70%)/$N_2$(30%) gas mixtures comparing to the pure Ar gas, the breakdown voltages under uniform field were increased about 1.8 and 2.2 times, and under non-uniform field were increased about 1.1 and 1.3 times at the pressure of 101.3[kPa]. Also, in case of Kr(85%)/$N_2$(15%) and Kr(70%)/$N_2$(30%) gas mixtures comparing to the pure Kr gas, the breakdown voltages under uniform field were increased about 1.7 and 2.0 times, and under non-uniform field were increased about 1.0 and 1.2 times.

  • PDF

Effects of $CO_2$ and $H_2O$ Additions on Partially Premixed Counterflow Flame by Considering Nongray Gas Radiation (비회색 가스 복사를 고려한 층류대향류 부분예혼합 화염에서의 $CO_2$$H_2O$ 첨가에 따른 영향 연구)

  • Jo, Bum-Jin;Kim, Tae-Kuk
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.3
    • /
    • pp.10-16
    • /
    • 2005
  • Detailed flame structures of the counterflow flames of $CH_4/Air$ formed with $CO_2$ and $H_2O$ addition are studied numerically. The detailed chemical reactions are modeled by using the OPPDIF and CHEMKIN-II code. Only the $CO_2$ and $H_2O$ are assumed to participate in radiative heat transfer while all other gases are assumed to be transparent. The discrete ordinates method(DOM) and the narrow band based WSGGM with a gray gas regrouping technique(WSGGM-RG) are applied for modeling the radiative transfer through non-homogeneous and non-isothermal combustion gas mixtures generated by the counter flow flames. The results compared with the SNB model show that the WSGGM-RG is successful in modeling the counterflow flames with non-gray gas mixture. The numerical results show that the addition of $CO_2$ and $H_2O$ to the oxidant nozzle lowers the peak temperature and the NO concentration in flame.

  • PDF

Long Term Therapeutic Plan for Patients with Non-Small Cell Lung Cancer Harboring EGFR Mutation

  • Jang, Seung Hun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.76 no.1
    • /
    • pp.8-14
    • /
    • 2014
  • Non-small cell lung cancer harboring epidermal growth factor receptor (EGFR) sensitizing mutations has a distinct disease entity. Patients with this cancer have better prognosis, and frequently achieve long-term survival. EGFR-tyrosine kinase inhibitor (TKI) is the drug of choice for this cancer; but the disease inevitably progresses, after durable response. The tumor is a mixture of EGFR-TKI sensitive clones and resistant clones, regardless of their molecular mechanisms. EGFR-TKI sensitive clones are very susceptible to this drug, but rarely eradicated; so, withdrawal of the drug permits rapid regrowth of drug sensitive clones, possibly causing "disease flare." Re-administration or continuation of EGFR-TKI can effectively suppress the expansion of drug sensitive clones, even when the total tumor volume continuously increases. Chemotherapy can definitely prolong the survival of patients experiencing EGFR-TKI failure. Prospective clinical trials are warranted to compare efficacies of chemotherapeutic agents. A few retrospective studies suggested that a taxanebased regimen may be superior to others. Here, we reviewed therapeutic options and clinical evidence about this unique disease entity.

Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions

  • Madani, Hamid;Hosseini, Hadi;Shokravi, Maryam
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.889-913
    • /
    • 2016
  • Vibration analysis of embedded functionally graded (FG)-carbon nanotubes (CNT)-reinforced piezoelectric cylindrical shell subjected to uniform and non-uniform temperature distributions are presented. The structure is subjected to an applied voltage in thickness direction which operates in control of vibration behavior of system. The CNT reinforcement is either uniformly distributed or functionally graded (FG) along the thickness direction indicated with FGV, FGO and FGX. Effective properties of nano-composite structure are estimated through Mixture low. The surrounding elastic foundation is simulated with spring and shear constants. The material properties of shell and elastic medium constants are assumed temperature-dependent. The motion equations are derived using Hamilton's principle applying first order shear deformation theory (FSDT). Based on differential cubature (DC) method, the frequency of nano-composite structure is obtained for different boundary conditions. A detailed parametric study is conducted to elucidate the influences of external applied voltage, elastic medium type, temperature distribution type, boundary conditions, volume percent and distribution type of CNT are shown on the frequency of system. In addition, the mode shapes of shell for the first and second modes are presented for different boundary conditions. Numerical results indicate that applying negative voltage yields to higher frequency. In addition, FGX distribution of CNT is better than other considered cases.

The treatment of sewage using DAF pump system with micro bubble and non-powered flotation tank (응집제 자동혼합형 미세기포 발생장치와 무동력 부상분리조를 이용한 하수의 처리)

  • Kim, Dong-Ha;Lee, Soo-Young;Jung, Eui-Taek
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.659-666
    • /
    • 2011
  • Although DAF(Dissolved Air Flotation) has been successfully accepted for water and wastewater treatment, the fundamental characteristics of the process have not been fully investigated. Water is saturated with compressed air to dissolve the air into the water at high pressure in saturation tank. Then the water containing dissolved air is released into a floatation tank at a lower pressure, generating micro-bubbles that rise gently through the water and carry the suspended matter to the surface. This study investigated the removal of sewage using automatic mixture type DAF pump and non-powered flotation tank. Characteristics of two devices were compared and analyzed with samples. The results showed that the PAC exhibited higher performance than other coagulants. When air dosage was 2.5ml/l/min, treatment was stable in operation. In the DAF pump with a pressure of 4 atm., the average size of bubbles was 36.2${\mu}m$. Removal efficiency of SS was 80%. At this time removal efficiency of COD was about 80%, of T-N was 30% and T-P was 70% in stable operation. It was concluded that DAF pump system with micro bubble performed higher efficiencies compared to general DAF system for treating wastewater.

Blind Source Separation Algorithm using the Second-Order Statistics (이차 통계치를 이용한 블라인드 신호분리 알고리즘)

  • 김천수;양완철;이병섭
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.2
    • /
    • pp.107-114
    • /
    • 2002
  • The problem of blind signal separation of independent sources consist in retrieving the source from the observation of unknown mixtures of unknown sources. In this paper, we propose a technique for blind signal separation that can extract original signals from their non-stationary mixtures observed in a ordinary room. The proposed method implements blind signal separation by minimizing a non-negative cost function that achieves the minimum when the second-order cross-correlation value of the observed signals becomes zero. The validity of the proposed method has been verified by a computer simulation and experiment that extracts two source signals from their mixtures observed in a normal room.

The use of neural networks in concrete compressive strength estimation

  • Bilgehan, M.;Turgut, P.
    • Computers and Concrete
    • /
    • v.7 no.3
    • /
    • pp.271-283
    • /
    • 2010
  • Testing of ultrasonic pulse velocity (UPV) is one of the most popular and actual non-destructive techniques used in the estimation of the concrete properties in structures. In this paper, artificial neural network (ANN) approach has been proposed for the evaluation of relationship between concrete compressive strength, UPV, and density values by using the experimental data obtained from many cores taken from different reinforced concrete structures with different ages and unknown ratios of concrete mixtures. The presented approach enables to find practically concrete strengths in the reinforced concrete structures, whose records of concrete mixture ratios are not yet available. Thus, researchers can easily evaluate the compressive strength of concrete specimens by using UPV values. The method can be used in conditions including too many numbers of the structures and examinations to be done in restricted time duration. This method also contributes to a remarkable reduction of the computational time without any significant loss of accuracy. Statistic measures are used to evaluate the performance of the models. The comparison of the results clearly shows that the ANN approach can be used effectively to predict the compressive strength of concrete by using UPV and density data. In addition, the model architecture can be used as a non-destructive procedure for health monitoring of structural elements.