• Title/Summary/Keyword: Non-load bearing

Search Result 163, Processing Time 0.027 seconds

Numerical Analysis of Misaligned Finite Line Contacts EHL Problem (Misalignment가 있는 유한한 선접촉 EHL 문제의 수치해석)

  • Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.26 no.5
    • /
    • pp.263-271
    • /
    • 2010
  • The rollers of cylindrical roller bearing are axially profiled to relieve high edge stress concentration caused by mainly their finite length and by misalignment. In this paper, a numerical analysis is carried to study the EHL of misaligned (tilted) rollers with axially profiled ends. Using a finite difference method with non-uniform grids and the Newton-Raphson method, the highly nonlinear EHL problems are systematically solved. Physically consistent solutions are obtained for moderate load, material parameters and very small misalignment. For different misalignment angles, contours and sectional plots of pressure and film shape near both edge regions are compared. The asymmetric pressure distributions and film shapes show that the EHL results of finite line contacts are highly dependent upon very small amounts of roller misalignment. Especially, the effect of misalignment on the EHL pressure distribution is much higher than the film shapes.

Infrared Spectroscopic Investigation of Lubricants under Shear (적외선 스펙트럼 측정방식을 이용한 윤활유의 변화연구)

  • 안영재
    • Tribology and Lubricants
    • /
    • v.3 no.2
    • /
    • pp.44-49
    • /
    • 1987
  • Molecular alignment has been postulated as influencing non-Newtonian behavior of liquid lubricants containing various additives. Four blended lubricants, two synthetic and two mineral were analyzed by FTIR spectroscopy. All of the lubricants exhibited polarization changes in their infrared emission spectra at 60$\circ$C under shear. For this work a special mockup journal bearing was constructed to seperate load and shear effects. At a temperature of 100$\circ$C polarization by shear was always reduced, presumably by Browninn motion. This work should be useful in pointing to the shear-sensitive factors. The presence of of a VI improving additive is manifested by the independence of the infrared emissivity with temperature at several wavelengths; a lubricant without a VI improver generally shows a decrease of emissivity at higher temperature.

The need for upgrading the seismic performance objectives

  • Kutanis, Mustafa;Boru, Elif Orak
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.401-414
    • /
    • 2014
  • The economic consequences of large earthquakes require a revolutionary change in the seismic performance objective of residential and commercial buildings. The majority of total construction costs consist of non-structural and architectural costs. Therefore, the aim of this research is to upgrade current Life Safety performance objectives and to offset adverse effects on country's economy after an occurrence of large earthquakes. However, such a proposal cannot easily prove the feasibility of cost-benefit analysis in structural design. In this paper, six generic reinforced concrete frames and dual system structures designed based on Turkish Seismic Code were used in cost analysis. The study reveals that load bearing structural systems with Immediate Occupancy performance level in seismic zones can be achieved with negligible costs.

An Elastohydrodynamic Lubrication of Elliptical Contacts : Part II - The Effect of Spin Motion (타원접촉의 탄성유체윤활 : 제2보 - 스핀운동의 영향)

  • Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.23 no.2
    • /
    • pp.49-55
    • /
    • 2007
  • A numerical analysis of elastohydrodynamic lubrication of elliptical contacts with both rolling and spinning has been carried out. A finite difference method with non-uniform grid systems and the Newton-Raphson method are applied to solve the problems. The velocity vectors resulting from combined spinning and rolling/sliding motion lead to asymmetric pressure distributions and film shapes. Pressure distributions, film contours and variations of the minimum and central film thicknesses are compared with various spin-roll ratios. Reduction of the minimum film thickness under spinning is remarkable whereas the central film thickness is relatively less. The spin motion have large effect on variations of the minimum film thickness with load parameter which are small in pure rolling/sliding cases. Therefore present numerical scheme can be used in the analysis of general elliptical contact EHL problems and further studies are required.

Analytical study on Reinforced Concrete Deep Beams with Opening (철근콘크리트 유공 깊은 보에 대한 해석적 연구)

  • 이석주;이종권;이병해
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.587-592
    • /
    • 2000
  • As the residential spaces become high-rised and high-density, Multi-story buildings were constructed with transfer girders, Deep beams, wall foundations, floor diaphragms an shear walls which may have column offsets. Especially, In the analysis and design of Multi-story buildings, the lateral loads must be taken into account. But, there have been no appropriate theory and national design code for predicting ultimate shear strength of reinforced concrete Deep beams with web opening. Only empirical and semi-empirical formulas for predicting their ultimate load bearing capacities due to the complexities of the structural non-linearity and material heterogeneity. So this study analyze tow-dimensional finite element model that represents exactly the behavior of real structures with SBETA which are general nonlinear finite element analysis program, and compare the results with that from the real reinforced Concrete Deep beams with web opening tests. From the comparison, and parametric study, The Study presents the elementary data of the earthquake resistance for the reinforced concrete Deep beams with web opening.

  • PDF

Dynamic Interrelationship between the Evolution of Structural Systems and Façade Design in Tall Buildings: From the Home Insurance Building in Chicago to the Present

  • Moon, Kyoung Sun
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.1
    • /
    • pp.1-16
    • /
    • 2018
  • The emergence of tall buildings in the late $19^{th}$ century was possible by using new materials and separating the role of structures and that of non-structural walls from the traditional load-bearing walls that acted as both. The role of structures is more important in tall buildings than in any other building type due to the "premium for height". Among the walls freed from their structural roles, façades are of conspicuous importance as building identifiers, significant definers of building aesthetics, and environmental mediators. This paper studies dynamic interrelationship between the evolution of tall building structural systems and façade design, beginning from the early tall buildings of skeletal structures with primitive curtainwalls to the recent supertall buildings of various tubular and outrigger structures with more advanced contemporary curtainwalls.

Simple equations for the calculation of the temperature within the cross-section of slim floor beams under ISO Fire

  • Zaharia, R.;Franssen, J.M.
    • Steel and Composite Structures
    • /
    • v.13 no.2
    • /
    • pp.171-185
    • /
    • 2012
  • The calculation of fire resistance for a composite structural element comprises the calculation of the temperature within its cross-section and of the load bearing capacity, considering the evolution of the steel and concrete mechanical properties, function of the temperature. The paper proposes a method to calculate the bending capacity under ISO fire, for Slim Floor systems using asymmetric steel beams, with a wider lower flange or a narrow upper flange welded onto a half hot-rolled profile. The temperatures in the cross-section are evaluated by means of empirical formulas determined through a parametrical analysis, performed with the special purpose non-linear finite element program SAFIR. Considering these formulas, the bending capacity may be calculated, using an analytical approach to determine the plastic bending moment, for different fire resistance demands. The results obtained with this simplified method are validated through numerical analysis.

Steady State Analysis of Magnetic Head Slider at Ultra Low Clearance (마그네틱 헤드 슬라이더의 極小 空氣膜에 대한 定常狀態 解析)

  • 장인배;한동철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.764-770
    • /
    • 1989
  • This paper analyze the steady state performance of a self-acting air lubricated slider bearing in hard disk/head system. Modified Reynolds' equation is derived from the steady state compressible Navier-Stokes equation, under slip-flow conditions. Finite difference technique and numerical procedure are described by using Newton-Raphson iteration method to slove the non-linear equations. These techniques are applied to conventional slider bearings and the effects of molecular mean free path(MMFP) for a recording surface of hard disk are shown. The calculation procedure developed here, wide applicabilities in practical head design procedures, and converges rapidly.

Properties of High Impact Resisting Mortar based on Polyurethane (폴리우레탄계 고내충격성 모르타르의 물성치 연구)

  • Lee, Chin-Yong;Choi, Dong-Uk;Ha, Sang-Su;Kim, Dong-Wan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.645-648
    • /
    • 2008
  • The expansion joint is an important part of the bridge, but the failure is occurred on the non-shrinkage concrete which is connected to the slab of the bridge and the expansion joint, and the other problem is the release of anchors in expansion joint due to the impact and vibration during the driven car on the bridge, especially an overloaded car. In this study, to overcome the failure of non-shrinkage of concrete, high impact resisting mortar is developed. The high impact resisting mortar shall be a polyurethane material compounded with an aggregate system to develop excellent flexibility characteristics, high load bearing capacity.

  • PDF

Experimental Study on the Ductile Behavior of Reinforced Concrete Beams with Carbon Fiber Sheets (탄소섬유시트로 보강된 철근콘크리트 보의 연성거동에 관한 실험적 고찰)

  • Park, Hyun-Jung;Park, Sung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.181-189
    • /
    • 2001
  • Recently, the need for strengthening reinforced concrete(R.C.) structure has been increased, particularly when there is an increase in load requirements, a change in use, a degradation problem, or design/construction defects. The use of composite materials for structural repair presents several advantages and has been investigated all over the world. It is well known that the incorporation of carbon fiber sheet(CFS) with concrete is one of the most effective ways to strengthen the R.C. structure. In this papers, experimentally investigated the ductile behavior of the R.C. beams strengthened with CFS, and provided the basic data for design of R.C. beams strengthened with CFS. Tests were carried out with 15 beams ($20cm{\times}30cm{\times}240cm$) reinforced with CFS, and with parameters including and the ratio of tensile reinforcement to that of balanced condition and number of CFS. The results show that strengthened and non-strengthened beams exhibit different ductile behovior. Non-strengthened beams showed increase of ductility as amount of the tensile reinforcement decreased. However, bearing capacity of the CFS-strengthened beams are dictated by the strength of the CFS layers that a very high ductility is indicated for the beams with large number of CFS.

  • PDF