• 제목/요약/키워드: Non-linear transport correction

검색결과 2건 처리시간 0.015초

Comprehensive investigation of the Ronen method in slab geometry

  • Roy Gross ;Johan Cufe ;Daniele Tomatis;Erez Gilad
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.734-748
    • /
    • 2023
  • A comprehensive investigation of the Ronen method is performed in homogeneous and heterogeneous slab problems from the Sood benchmark, considering isotropic and linearly-anisotropic problems. Three finite differences implementations are exercised and compared. The results are compared to reference solutions using one and two energy groups. The validation is performed for the criticality eigenvalue and the fundamental neutron flux distribution. The results demonstrate the significantly improved accuracy achievable by the Ronen method using a broad set of problems. For standard convergence tolerances, the maximal deviation in criticality eigenvalue is less than ten pcm, and the maximal deviation in the spatial distribution of the flux is less than 2%, always located near sharp interfaces or vacuum boundaries.

Reynolds stress correction by data assimilation methods with physical constraints

  • Thomas Philibert;Andrea Ferrero;Angelo Iollo;Francesco Larocca
    • Advances in aircraft and spacecraft science
    • /
    • 제10권6호
    • /
    • pp.521-543
    • /
    • 2023
  • Reynolds-averaged Navier-Stokes (RANS) models are extensively employed in industrial settings for the purpose of simulating intricate fluid flows. However, these models are subject to certain limitations. Notably, disparities persist in the Reynolds stresses when comparing the RANS model with high-fidelity data obtained from Direct Numerical Simulation (DNS) or experimental measurements. In this work we propose an approach to mitigate these discrepancies while retaining the favorable attributes of the Menter Shear Stress Transport (SST) model, such as its significantly lower computational expense compared to DNS simulations. This strategy entails incorporating an explicit algebraic model and employing a neural network to correct the turbulent characteristic time. The imposition of realizability constraints is investigated through the introduction of penalization terms. The assimilated Reynolds stress model demonstrates good predictive performance in both in-sample and out-of-sample flow configurations. This suggests that the model can effectively capture the turbulent characteristics of the flow and produce physically realistic predictions.