• Title/Summary/Keyword: Non-linear finite strain consolidation

Search Result 13, Processing Time 0.022 seconds

Analysis Method for Non-Linear Finite Strain Consolidation for Soft Dredged Soil Deposit -Part I: Parameter Estimation for Analysis (초연약 준설 매립지반의 비선형 유한변형 압밀해석기법 -Part I: 해석 물성치 평가)

  • Kwak, Tae-Hoon;Lee, Chul-Ho;Lim, Jee-Hee;An, Yong-Hoon;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.9
    • /
    • pp.13-24
    • /
    • 2011
  • The renowned Terzaghi's one-dimensional consolidation theory is not applicable to quantification of time-rate settlement for highly deformable soft clays such as dredged soil deposits. To deal with this special condition, a non-linear finite strain consolidation theory should be adopted to predict the settlement of dredged soil deposits including self-weight and surcharge-induced consolidation. It is of importance to determine the zero effective stress void ratio ($e_{00}$), which is the void ratio at effective stress equal to zero, and the relationships of void ratio-effective stress and of void ratio-hydraulic conductivity for characterizing non-linear finite strain consolidation behavior for deformable dredged soil deposits. The zero effective stress void ratio means a transitional status from sedimentation to self-weight consolidation of dredged soils. In this paper, laboratory procedures and equipments are introduced to measure such key parameters in the non-linear finite strain consolidation analysis. In addition, the non-linear finite strain consolidation parameters of the Incheon clay and kaolinite are evaluated with the aid of the proposed methods in this paper, which will be used as input parameters for the non-linear finite strain consolidation analyses being performed in the companion paper.

Development of a numerical model for 2-D axisymmetric non-linear finite strain consolidation considering self-weight consolidation of dredged soil- (준설매립지반의 자중압밀을 고려한 2차원 축대칭 비선형 유한변형 압밀 수치해석 모델 개발)

  • Kwak, Tae-Hoon;Yoon, Sang-Bong;An, Yong-Hoon;Choi, Eun-Seok;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.3-12
    • /
    • 2010
  • Vertical drains have been commonly used to increase the rate of the consolidation of dredged material. The installation of vertical drains additionally provides a radial flow path in the dredged foundation. The objective of this study develops a numerical model for 2-D axisymmetric non-linear finite strain consolidation considering self-weight consolidation to predict the effect of vertical drain in dredged foundation which is in process of self-weight consolidation. The non-linear relationship between the void ratio and effective stress and permeability during consolidation are taken into account in the numerical model. The results of the numerical analysis are compared with that of the self-weight consolidation test in which an artificial vertical drain is installed. In addition, the numerical model developed in this paper is the simplified analytical method proposed by Ahn et, al (2010). The comparisons show that the developed numerical model can properly simulate the consolidation of the dredged material with the vertical drains installed.

  • PDF

Characterization of Non-linear Consolidation of Dredged Soil from Incheon Area (인천 지역 준설토의 비선형 압밀특성 연구)

  • Oak, Young-Suk;An, Yong-Hoon;Lee, Chul-Ho;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1693-1706
    • /
    • 2008
  • It is of importance to determine the zero effective stress void ratio($e_{00}$), which is the void ratio at effective stress equal to zero, and the relationships of void ratio-effective stress and of void ratio-hydraulic conductivity for characterizing non-liner finite strain consolidation behavior for ultra-soft dredged materials. The zero effective stress void ratio means a transitional status from sedimentation to self-weight consolidation of very soft soil deposits, and acts as a starting point for self-weight consolidation in the non-linear finite strain numerical analysis such as PSDDF. In this paper, a new method for determining the zero effective stress void ratio has been introduced with the aid of measuring electrical resistivity of the specimen. A correlation between the zero effective stress void ratio and the initial slurry void ratio has been proposed, which can be used in PSDDF analysis as an input parameter. Combining all of the accessible experimental data, the consolidation characteristics of a dredged soil from the Incheon area has been studied in detail.

  • PDF

A Numerical Study on One-Dimensional Consolidation of Soft Clay with Finite Strain Consolidation Theory (유한변형율(有限變形率) 압밀이론(壓密理論)에 의한 연약(軟弱) 점토(粘土)의 -차원(次元) 압밀(壓密)에 관한 수치(數値) 해석적(解析的) 연구)

  • Yoo, Nam-Jae;Jung, Yoon-Hwa;Lee, Myung-Woog
    • Journal of Industrial Technology
    • /
    • v.11
    • /
    • pp.85-98
    • /
    • 1991
  • A numerical study was performed to investigate characteristics of one-dimensional consolidation of soft clay. Results of consolidation tests with the remolded normally consolidation clay of having a very high initial void ratio were analyzed by using the numerical technique of finite difference method based on the finite strain consolidation theory, to evaluate consolidational characteristics of soft clay under surcharges on the top of clay. On the other hand, a numerical parametric study on soft clay consolidated due to its self-weight was also carried out to find its effect on one-dimensional consolidation. Terzaghi's conventional consolidation theory, finite strain consolidation theories with linear and non-linear interpolation of effective stress - void ratio - permeability relation were used to analyze the test results and their results were compared to each other to figure out the difference between them. Therefore, the validity of theories was assessed.

  • PDF

Analysis Method for Non-Linear Finite Strain Consolidation for Soft Dredged Soil Deposit - Part II: Analysis Method and Craney Island Case Study (초연약 준설 매립지반의 비선형 유한변형 압밀해석기법 - Part II: 해석기법과 Craney Island 사례분석)

  • Choi, Hang-Seok;Kwak, Tae-Hoon;Lee, Chul-Ho;Lee, Dong-Seop;Stark, T.D.
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.5-15
    • /
    • 2011
  • This paper presents two analysis methods for characterizing the non-linear finite strain consolidation behavior of highly deformable dredged soil deposits along with the fundamental parameters obtained in the companion paper; that is, the zero effective stress void ratio, the non-linear relationships of void ratio-effective stress and void ratio-hydraulic conductivity. The simplified Morris's analytical solution (2002) and the widely recognized numerical program, PSDDF (primary Consolidation, Secondary Compression, and Desiccation of Dredged Fill) for both single and double drainage conditions are adopted in this paper to verify a series of laboratory experiments for self-weight consolidation of the Incheon clay and Kaolinite. The comparisons show that the analysis methods proposed herein can properly simulate the long-term non-linear finite strain consolidation behavior for dredged soils in the field. In addition, a case study for the artificial Craney Island has been conducted to illustrate the importance of obtaining appropriate non-linear finite strain consolidation parameters and the applicability of PSDDF in promoting dredged soil disposal.

Design charts for estimating the consolidation times of reclaimed marine clays in Korea

  • Sang-Hyun Jun;Byung-Soo Park;Hyuk-Jae Kwon;Jong-Ho Lee
    • Geomechanics and Engineering
    • /
    • v.32 no.1
    • /
    • pp.1-20
    • /
    • 2023
  • To predict the consolidation behavior of dredged and reclaimed marine clays exhibiting consolidation settlement with large strains, the finite strain consolidation theory must be used. However, challenges in appropriately applying the theory and determining input parameters make design and analysis studies difficult. To address these challenges, design charts for predicting the consolidation settlement of reclaimed marine clays are developed by a numerical approach based on the finite strain consolidation theory. To prepare the design charts, a sensitivity analysis of parameters is performed, and influencing parameters, such as initial void ratio and initial height, as well as the non-linear constitutive void ratio-effective stresspermeability relation, are confirmed. Six representative Korean marine clays obtained from different locations with different liquid limits are used. The design charts for estimating the consolidation times corresponding to various degrees of consolidation are proposed for each of the six representative clays. The consolidation settlements predicted from the design charts are compared to those in previous studies and at an actual construction site and are found to agree well with them. The proposed design charts can therefore be used to solve problems related to the consolidation of reclaimed marine clays having large strains.

A Study of Three Dimensional Numerical Analysis on Vacuum Consolidation

  • Chung, Youn ln
    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.5-20
    • /
    • 1997
  • A governing equation of uncoupled three dimensional finite strain theory of consolidation is presented. This equation is suitable for relatively thick layers, possessing large strain, non-linear material property, and variable permeability. A special numerical solution procedure has to be adopted for the finite difference scheme because the solution is not stable in using Forward-Time Centered-Space (FTCS) method and the governing equation is highly non-linear. The solution is capable of predicting settlement with respect to time. The results predicted by the developed method of analysis have been compared with those of experimental tests on different types of highly compressible soils with vertical wick drain. The uncoupled three dimensional finite strain theory of consolidation appears to predict settlement behavior well. A detailed comparison shows good agreement in terms of total settlement, and reasonable agreement with respect to time.

  • PDF

Non-linear Finite Strain Consolidation of Ultra-soft Soil Formation Considering Radial Self-weight Consolidation (방사방향 자중압밀을 고려한 초연약 지반의 비선형 유한변형 압밀거동 분석)

  • An, Yong-Hoon;Kwak, Tae-Hoon;Lee, Chul-Ho;Choi, Hang-Seok;Choi, Eun-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.495-508
    • /
    • 2010
  • Vertical drains are commonly used to accelerate the consolidation process of soft soils, such as dredged materials. The installation of vertical drain provides a radial drainage path to water in the deposit soil in addition to the vertical direction. An estimation of time rate of settlement is considerably complicated when vertical drains are installed to enhance consolidation process of dredged material because the vertical drains are commonly installed before self-weight consolidation is ceased. In this paper, the vertical drain theory developed by Barron(1948) is applied to analyze the non-linear consolidation behavior considering radial drainage. The overall average degree of self-weight consolidation of the dredged soil under the condition that the water is drained in both radial and vertical directions is estimated using the Carillo(1942) formula. In addition, the Morris(2002) theory and the one-dimensional non-linear finite strain numerical model, PSDDF, are applied to analyze the self-weight consolidation in case of only the vertical drainage is considered. The new analysis approach proposed herein can simulate properly the time rate of the self-weight consolidation of dredged materials that is facilitated with vertical drains.

  • PDF

2-D Axisymmetric Non-linear Finite Strain Consolidation Model Considering Self-weight Consolidation of Dredged Soil (준설매립지반의 자중압밀을 고려한 2차원 축대칭 비선형 유한변형 압밀 모델)

  • Kwak, Tae-Hoon;Lee, Dong-Seop;Lim, Jee-Hee;Stark, T.D.;Choi, Eun-Seok;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.8
    • /
    • pp.5-19
    • /
    • 2012
  • Vertical drains along with the preloading technique have been commonly used to enhance the consolidation rate of dredged placement formation. In practice, vertical drains are usually installed in the process of self-weight consolidation of a dredged soil deposit because this process takes considerable time to be completed, which makes conventional analytical or numerical models difficult to quantify the consolidation behavior. In this paper, we propose a governing partial differential equation and develop a numerical model for 2-D axisymmetric non-linear finite strain consolidation considering self-weight consolidation to predict the behavior of a vertical drain in the dredged placement foundation which is installed during the self-weight consolidation. In order to verify the developed model in this paper, results of the numerical analysis are compared with that of the lab-scaled self-weight consolidation test. In addition, the model verification has been carried out by comparing with the simplified method. The comparisons show that the developed model can properly simulate the consolidation of the dredged placement formation with the vertical drains installed during the self-weight consolidation. Finally, the effect of construction schedule of vertical drains and of pre-loading during the self-weight consolidation is examined by simulating an imaginary dredged material placement site with a thickness of 10 m and 20 m, respectively. This simulation infers the applicability of the proposed method in this research for designing a soil improvement in a soft dredged deposit when vertical drains and pre-loading are implemented before the self-weight consolidation ceases.

A study for Variation of Consolidation Behavior by Analysis Method (해석기법에 따른 압밀거동 변화에 관한 연구)

  • Chung, Youn-In;Kim, Min-Jung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.2
    • /
    • pp.97-103
    • /
    • 2011
  • In this study, finite element analysis is performed for consolidation behavior prediction of drainage-installed soft deposits. Finite element analysis is performed under the two strain conditions as small strain with limited application and large strain for relatively thick layers, large deformation and non-linear material properties. The analysis conditions such as layer depth, loading conditions, smear effects are also changed and variation of consolidation behavior for each condition is estimated from ABAQUS program.