• Title/Summary/Keyword: Non-linear contact

Search Result 234, Processing Time 0.026 seconds

The Electrical Properties of GaN Individual Nanorod Devices by Wet-etching of the Nanorod Surface and Annealing Treatment (표면 습식 식각 및 열처리에 따른 GaN 단일 나노로드 소자의 전기적 특성변화)

  • Ji, Hyun-Jin;Choi, Jae-Wan;Kim, Gyu-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.152-155
    • /
    • 2011
  • Even though nano-scale materials were very advantageous for various applications, there are still problems to be solved such as the stabilization of surface state and realization of low contact resistances between a semiconducting nanowire and electrodes in nano-electronics. It is well known that the effects of contacts barrier between nano-channel and metal electrodes were dominant in carrier transportation in individual nano-electronics. In this report, it was investigated the electrical properties of GaN nanorod devices after chemical etching and rapid thermal annealing for making good contacts. After KOH wet-etching of the contact area the devices showed better electrical performance compared with non-treated GaN individual devices but still didn't have linear voltage-current characteristics. The shape of voltage-current properties of GaN devices were improved remarkably after rapid thermal annealing as showing Ohmic behaviors with further bigger conductivities. Even though chemical etching of the nanorod surfaces could cause scattering of carriers, in here it was shown that the most important and dominant factor in carrier transport of nano-electronics was realization of low contact barrier between nano-channel and metal electrodes surely.

Design Methodology of Main Bearing Cap by a Finite Element Analysis (베어링 캡 유한 요소 해석 설계 방법)

  • Yang, Chull-Ho;Han, Moon-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.80-86
    • /
    • 2009
  • Main bearing cap is one of the essential structural elements in internal combustion engine. Main bearing cap guides and holds the crankshaft, withstanding the full combustion and inertia loads of the engine. A seamless design methodology using FEA has been proposed to produce a reliable design of main bearing cap. A Levy's thick cylinder model was applied to calculate the contact pressure between bearing shell and housing bore. A calculated contact pressure at housing bore is within the allowed limit comparing with that from bearing shell model. An adequate FEA model was suggested to obtain reliable solutions for the durability of main bearing cap. 3D global model consists of engine bulkhead, main bearing cap, and bolts. Sub-model consisting of cap and part of bolts is used to get detailed solution of main bearing cap. A very careful contact modeling practice is needed to resolve the convergence problems frequently encountering during combined geometric and material non-linear problems. A proposed methodology has been applied to the main bearing cap model successfully and obtained reliable stress results and fatigue safety factors.

CHARACTERITICS OF MODIFIED PD OF ELECTROMAGNETIC SUSPENSION SYSTEM FOR NON-CONTACT STEEL PLATE CONVEYANCE

  • Xu, Dehong;Sun, Xiao;Feng, Wei
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.131-136
    • /
    • 1998
  • Based on the linear model of electromagnetic suspension (EMS) system, it is able to be further simplified into a standard second-order model with a modified PD control. In this paper static and dynamic characteristics of EMS with modified PD control are investigated when suspended weight of steel plate change. A experimental system has been built to verify static and dynamic characteristics of EMS system. Simulation and experiment are both given.

  • PDF

Dvnarnic Reswnse of Laminated Com~osite Shell under Low-Velocity Impact (복합적층쉘의 저속충격에 대한 동적 거동 해석)

  • 조종두;조영훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.969-974
    • /
    • 1994
  • The dynamic behavior of graphite/epoxy laminated composite shell structure due to low-velocity impact is investigated using the finite element method. In this analysis, the Newmark's constant-acceleration time integration algorithm is used. The impact response such as contact force, central deflection and dynamic strain history form shell structure analysis are compared with those form the plate non-linear analysis. The effects of curvature, impact velocity and mass of impactor on the composite shell are discussed.

  • PDF

Development of Vision Sensor Module for the Measurement of Welding Profile (용접 형상 측정용 시각 센서 모듈 개발)

  • Kim C.H.;Choi T.Y.;Lee J.J.;Suh J.;Park K.T.;Kang H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.285-286
    • /
    • 2006
  • The essential tasks to operate the welding robot are the acquisition of the position and/or shape of the parent metal. For the seam tracking or the robot automation, many kinds of contact and non-contact sensors are used. Recently, the vision sensor is most popular. In this paper, the development of the system which measures the profile of the welding part is described. The total system will be assembled into a compact module which can be attached to the head of welding robot system. This system uses the line-type structured laser diode and the vision sensor It implemented Direct Linear Transformation (DLT) for the camera calibration as well as radial distortion correction. The three dimensional shape of the parent metal is obtained after simple linear transformation and therefore, the system operates in real time. Some experiments are carried out to evaluate the performance of the developed system.

  • PDF

System for Measuring the Welding Profile Using Vision and Structured Light (비전센서와 구조화빔을 이용한 용접 형상 측정 시스템)

  • Kim, Chang-Hyeon;Choe, Tae-Yong;Lee, Ju-Jang;Seo, Jeong;Park, Gyeong-Taek;Gang, Hui-Sin
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2005.11a
    • /
    • pp.50-56
    • /
    • 2005
  • The robot systems are widely used in the many industrial field as well as welding manufacturing. The essential tasks to operate the welding robot are the acquisition of the position and/or shape of the parent metal. For the seam tracking or the robot tracking, many kinds of contact and non-contact sensors are used. Recently, the vision is most popular. In this paper, the development of the system which measures the shape of the welding part is described. This system uses the line-type structured laser diode and the vision sensor. It includes the correction of radial distortion which is often found in the image taken by the camera with short focal length. The Direct Linear Transformation (DLT) method is used for the camera calibration. The three dimensional shape of the parent metal is obtained after simple linear transformation. Some demos are shown to describe the performance of the developed system.

  • PDF

3D Dimensional Finite Element Analysis of Contact Stress of Gold Screws in Implant Partial Denture (임플란트 국소의치 금나사의 3차원 유한요소법 접촉응력 분석)

  • Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.35 no.4
    • /
    • pp.303-312
    • /
    • 2013
  • Purpose: In this research, non-linear three dimensional finite element models with contact elements were constructed. For the investigations of the distributions of contact stresses, 3 units fixed partial dentures model were studied, especially on the interface of the gold screw and cylinder, abutment screw. Methods: 3 types of models were constructed ; the basic fixed partial denture in molar region with 3 units and 3 implants, the intermediate pontic fixed partial denture model with 3 units and 2 implants, and the extension pontic fixed partial denture model with 3 units and 2 implants. For all types, the external loading due to chewing was simulated by applying $45^{\circ}$ linguo-buccal loading of 300 N to the medial crown. For the simulation of the clamping force which clinically occurs due to the torque, thermal expansion was provided to the cylinder as a preload. Results: Under 300 N concentrated loading to the medial crown, the maximum contact stress between abutment screw and gold screw was 86.85~175.86MPa without preload, while the maximum contact stress on the same area was 25.59~57.84MPa with preload. Conclusion: The preloading affected the outcomes of the finite element stress analysis. Reflecting the clinical conditions, the preloading conditions should be considered for other practical study utilizing FEA. For the study of the contact stresses and related motions, various conditions, such as frictional coefficient changes, gap between contact surfaces, were also varied and analyzed.

Damage of Overlaid Concrete Structures Subjected In Thermally Transient Condition by Rainfall (강우에 따른 콘크리트 덧씌우기 보수체의 손상에 관한 연구)

  • 윤우현
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.491-498
    • /
    • 2001
  • The failure phenomenon of overlaid concrete structures, such as surface crack and peel-off failure in the contact zone, was investigated due to temperature shock(rainfall). To investigate this failure phenomenon, the surface tensile stress, and the shear stress, the vertical tensile stress in the contact zone were analysed using the non-linear stress-strain relationship of material such as strain-hardening- and strain-softening diagrams. Rainfall intensity, overlay thickness and overlay material were the main variables in the analyses. It is assumed that the initial temperature of overlaid concrete structures was heated up to 55$\^{C}$ by the solar heat. With a rain temperature 10$\^{C}$ and the rainfall intensity of nR=1/a, tR=10min, 60min, the stress states of overlaid concrete structures were calculated. The result shows that only fictitious cracks occurred in the overlay surface and no shear bond failure occurred in the contact zone. The vortical tensile stress increasing with overlay thickness was proved to be the cause of peel-off failure in the contact zone. The formulae for relationship between the vertical tensile stress and overlay thickness, material properties were derived. Using this formulae, it is possible to select proper material and overlay thickness to prevent failure in the contact zone due to temperature shock caused by rainfall.

Investigating the effect of using three pozzolans (including the nanoadditive) in combination on the formation and development of cracks in concretes using non-contact measurement method

  • Grzegorz Ludwik Golewski
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.217-229
    • /
    • 2024
  • This paper presents results of visual analysis of cracks formation and propagation of concretes made of quaternary binders (QBC). A composition of the two most commonly used mineral additives, i.e. fly ash (FA) and silica fume (SF) in combination with nanosilica (nS), has been proposed as a partial replacement of the cement. The principal objective of the present study is to achieve information about the effect of simultaneous incorporation of three pozzolans as partial replacement to the OPC on the fracture processes in concretes made from quaternary binders (QBC). The modern and precise non-contact measurement method (NCMM) via digital image correlation (DIC) technique was used, during the studies. In the course of experiments it was established that the substitution of OPC with three pozzolans including the nanoadditive in FA+SF+nS FA+SF+nS combination causes a clear change of brittleness and behavior during fractures in QBCs. It was found that the shape of cracks in unmodified concrete was quasi-linear. Substitution of the binder by SCMs resulted in a slight heterogeneity of the structure of the QBC, including only SF and nS, and clear heterogeneity for concretes with the FA additive. In addition, as content of FA rises throughout each of QBC series, material becomes more ductile and shows less brittle failure. It means that an increase in the FA content in the concrete mix causes a significant change in fracture process in this composite in comparison to concrete with the addition of silica modifiers only.

Non-linear Analysis for a Weatherstrip of a Vehicle Door with FE Modeling (자동차 도어 웨더스트립의 유한요소 모델링 및 해석)

  • 김광훈;문병영;김병수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.38-41
    • /
    • 2004
  • Weatherstrip seals protect passengers form noise, dust, rain and wind out of the vehicle. The more contact area between a body frame and a weatherstrip, the higher efficiency of sealing. A weatherstrip is a sort of an elastomer. Mechanical properties of the weatherstrip is obtained by uniaxial tension test. In this study, nonlinear finite element(FE) analysis is performed to obtain displacements and contact shapes of the weatherstrip. The FE model is developed by using Ogden-foam formulation. In the results of nonlinear FE analysis, the most valuable deformation of the weatherstrip occurred when displacement control value reaches 7.2mm. Severe deformation is observed as the displacement control value become more increased.

  • PDF