• 제목/요약/키워드: Non-linear and linear

검색결과 5,883건 처리시간 0.031초

Adaptive control of rotationally non-linear asymmetric structures under seismic loads

  • Amini, Fereidoun;Rezazadeh, Hassan;Afshar, Majid Amin
    • Structural Engineering and Mechanics
    • /
    • 제65권6호
    • /
    • pp.721-730
    • /
    • 2018
  • This paper aims to inspect the effectiveness of the Simple Adaptive Control Method (SACM) to control the response of asymmetric buildings with rotationally non-linear behavior under seismic loads. SACM is a direct control method and was previously used to improve the performance of linear and non-linear structures. In most of these studies, the modeled structures were two-dimensional shear buildings. In reality, the building plans might be asymmetric, which cause the buildings to experience torsional motions under earthquake excitation. In this study, SACM is used to improve the performance of asymmetric buildings, and unlike conventional linear models, the non-linear inertial coupling terms are considered in the equations of motion. SACM performance is compared with the Linear Quadratic Regulator (LQR) algorithm. Moreover, the LQR algorithm is modified, so that it is appropriate for rotationally non-linear buildings. Active tuned mass dampers are used to improve the performance of the modeled buildings. The results show that SACM is successful in reducing the response of asymmetric buildings with rotationally non-linear behavior under earthquake excitation. Furthermore, the results of the SACM were very close to those of the LQR algorithm.

임펄스 잡음제거를 위한 프로그레시브 필터 (Progressive Filter for Impulse Noise Reduction)

  • 김영로;동성수
    • 전자공학회논문지 IE
    • /
    • 제49권1호
    • /
    • pp.24-29
    • /
    • 2012
  • 본 논문에서는 임펄스 잡음을 제거하는 프로그레시브 필터를 제안한다. 비선형 필터와 선형필터를 순차적으로 적용하는 방법을 제안한다. 비선형 필터는 급격한 잡음 패턴을 제거한다. 이에 따른 비선형필터링 된 영상을 선형 필터에서 에지에 따라 방향을 조절하여 필터링한다. 따라서 제안하는 방법은 에지를 유지할 뿐 아니라 일정한 지역에서 잡음을 효과적으로 제거한다. 실험결과, 제안하는 방법이 기존 선형, 비선형 프로그레시브 필터링 방법들 보다 향상된 결과를 보인다.

A study on response analysis of submerged floating tunnel with linear and nonlinear cables

  • Yarramsetty, Poorna Chandra Rao;Domala, Vamshikrishna;Poluraju, P.;Sharma, R.
    • Ocean Systems Engineering
    • /
    • 제9권3호
    • /
    • pp.219-240
    • /
    • 2019
  • This paper presents the comparison between SFT response with linear and nonlinear cables. The dynamic response analysis of submerged floating tunnel (SFT) is presented computationally with linear and nonlinear tension legs cables. The analysis is performed computationally for two wave directions one at 90 degrees (perpendicular) to tunnel and other at 45 degrees to the tunnel. The tension legs or cables are assumed as linear and non- linear and the analysis is also performed by assuming one tension leg or cable is failed. The Response Amplitude Operators (RAO's) are computed for first order waves, second order waves for both failure and non-failure case of cables. For first order waves- the SFT response is higher for sway and heave degree of freedom with nonlinear cables as compared with linear cables. For second order waves the SFT response in sway degree of freedom is bit higher response with linear cables as compared with nonlinear cables and the SFT in heave degree of freedom has higher response at low time periods with nonlinear cables as compared with linear cables. For irregular waves the power spectral densities (PSD's) has been computed for sway and heave degrees of freedom, at $45^0$ wave direction PSD's are higher with linear cables as compared with nonlinear cables and at $90^0$ wave direction the PSD's are higher with non-linear cables. The mooring force responses are also computed in y and z directions for linear and nonlinear cables.

Comparison of linear and non-linear equation for the calibration of roxithromycin analysis using liquid chromatography/mass spectrometry

  • Lim, Jong-Hwan;Yun, Hyo-In
    • 대한수의학회지
    • /
    • 제50권1호
    • /
    • pp.11-17
    • /
    • 2010
  • Linear and non-linear regressions were used to derive the calibration function for the measurement of roxithromycin plasma concentration. Their results were compared with weighted least squares regression by usual weight factors. In this paper the performance of a non-linear calibration equation with the capacity to account empirically for the curvature, y = ax$^{b}$ + c (b $\neq$ 1) is compared with the commonly used linear equation, y = ax + b, as well as the quadratic equation, y = ax$^{2}$+ bx + c. In the calibration curve (range of 0.01 to 10 ${\mu}g/mL$) of roxithromycin, both heteroscedasticity and nonlinearity were present therefore linear least squares regression methods could result in large errors in the determination of roxithromycin concentration. By the non-linear and weighted least squares regression, the accuracy of the analytical method was improved at the lower end of the calibration curve. This study suggests that the non-linear calibration equation should be considered when a curve is required to be fitted to low dose calibration data which exhibit slight curvature.

비선형 탄성 복합재료 기둥의 임계 좌굴하중 계산 및 안정성 평가 (Stability Evaluation & Determination of Critical Buckling Load for Non-Linear Elastic Composite Column)

  • 주기호;정재호;강태진
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.215-219
    • /
    • 2003
  • Buckling and post-buckling Analysis of Ludwick type and modified Ludwick type elastic materials was carried out. Because the constitutive equation, or stress-strain relationship is different from that of linear elastic one, a new governing equation was derived and solved by $4^{th}$ order Runge-Kutta method. Considered as a special case of combined loading, the buckling under both point and distributed load was selected and researched. The final solution takes distinguished behavior whether the constitutive relation is chosen to be modified or non-modified Ludwick type as well as linear or non-linear. We also derived strain energy function for non-linear elastic constitutive relationship. By doing so, we calculated the criterion function which estimates the stability of the equilibrium solutions and determines critical buckling load for non-linear cases. We applied this theory to the constitutive relationship of fabric, which also is the non-linear equation between the applied moment and curvature. This results has both technical and mathematical significance.

  • PDF

Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams

  • Azandariani, Mojtaba Gorji;Gholami, Mohammad;Nikzad, Akbar
    • Advances in nano research
    • /
    • 제12권1호
    • /
    • pp.37-47
    • /
    • 2022
  • In this paper, the non-linear static analysis of Timoshenko nanobeams consisting of bi-directional functionally graded material (BFGM) with immovable ends is investigated. The scratching in the FG nanobeam mid-plane, is the source of nonlinearity of the bending problems. The nonlocal theory is used to investigate the non-linear static deflection of nanobeam. In order to simplify the formulation, the problem formulas is derived according to the physical middle surface. The Hamilton principle is employed to determine governing partial differential equations as well as boundary conditions. Moreover, the differential quadrature method (DQM) and direct iterative method are applied to solve governing equations. Present results for non-linear static deflection were compared with previously published results in order to validate the present formulation. The impacts of the nonlocal factors, beam length and material property gradient on the non-linear static deflection of BFG nanobeams are investigated. It is observed that these parameters are vital in the value of the non-linear static deflection of the BFG nanobeam.

마켓 타이밍과 유상증자 (Market Timing and Seasoned Equity Offering)

  • 서성원
    • 아태비즈니스연구
    • /
    • 제15권1호
    • /
    • pp.145-157
    • /
    • 2024
  • Purpose - In this study, we propose an empirical model for predicting seasoned equity offering (SEO here after) using machine learning methods. Design/methodology/approach - The models utilize the random forest method based on decision trees that considers non-linear relationships, as well as the gradient boosting tree model. SEOs incur significant direct and indirect costs. Therefore, CEOs' decisions of seasoned equity issuances are made only when the benefits outweigh the costs, which leads to a non-linear relationship between SEOs and a determinant of them. Particularly, a variable related to market timing effectively exhibit such non-linear relations. Findings - To account for these non-linear relationships, we hypothesize that decision tree-based random forest and gradient boosting tree models are more suitable than the linear methodologies due to the non-linear relations. The results of this study support this hypothesis. Research implications or Originality - We expect that our findings can provide meaningful information to investors and policy makers by classifying companies to undergo SEOs.

The extension of the largest generalized-eigenvalue based distance metric Dij1) in arbitrary feature spaces to classify composite data points

  • Daoud, Mosaab
    • Genomics & Informatics
    • /
    • 제17권4호
    • /
    • pp.39.1-39.20
    • /
    • 2019
  • Analyzing patterns in data points embedded in linear and non-linear feature spaces is considered as one of the common research problems among different research areas, for example: data mining, machine learning, pattern recognition, and multivariate analysis. In this paper, data points are heterogeneous sets of biosequences (composite data points). A composite data point is a set of ordinary data points (e.g., set of feature vectors). We theoretically extend the derivation of the largest generalized eigenvalue-based distance metric Dij1) in any linear and non-linear feature spaces. We prove that Dij1) is a metric under any linear and non-linear feature transformation function. We show the sufficiency and efficiency of using the decision rule $\bar{{\delta}}_{{\Xi}i}$(i.e., mean of Dij1)) in classification of heterogeneous sets of biosequences compared with the decision rules min𝚵iand median𝚵i. We analyze the impact of linear and non-linear transformation functions on classifying/clustering collections of heterogeneous sets of biosequences. The impact of the length of a sequence in a heterogeneous sequence-set generated by simulation on the classification and clustering results in linear and non-linear feature spaces is empirically shown in this paper. We propose a new concept: the limiting dispersion map of the existing clusters in heterogeneous sets of biosequences embedded in linear and nonlinear feature spaces, which is based on the limiting distribution of nucleotide compositions estimated from real data sets. Finally, the empirical conclusions and the scientific evidences are deduced from the experiments to support the theoretical side stated in this paper.

쌍입력 기술함수를 갖는 비선형 보상기를 이용한 유연한 빔의 제어 (The Control of Flexible Beam using Nonlinear Compensator with Dual-Input Describing Function)

  • 권세현;이형기;최부귀
    • 제어로봇시스템학회논문지
    • /
    • 제4권5호
    • /
    • pp.644-650
    • /
    • 1998
  • In this paper , a state space model for flexible beam is presented using the assumed-modes approach. The state space equation is derived for a flexible beam in which one end is connected to a motor and is driven by a torque equation and the other end is free. Many of the transfer function proposed thus far use the torque to the flexible beam as the input and the tip deflection of the flexible beam as the output. The Technique for the analysis and synthesis of the dual-input describing function(DIDF) is introduced here and the construction of a non-linear compensator, based on this technique, is proposed. This non-linear compensator, properly connected in the direct path of a closed-loop linear or non-linear control system. The above non-linear network is used to compensate linear and non-linear systems for instability, limit cycles, low speed of response and static accuracy. The effectiveness of the proposed scheme is demonstrated through computer simulation and experimental results.

  • PDF

A NEW APPROACH FOR NUMERICAL SOLUTION OF LINEAR AND NON-LINEAR SYSTEMS

  • ZEYBEK, HALIL;DOLAPCI, IHSAN TIMUCIN
    • Journal of applied mathematics & informatics
    • /
    • 제35권1_2호
    • /
    • pp.165-180
    • /
    • 2017
  • In this study, Taylor matrix algorithm is designed for the approximate solution of linear and non-linear differential equation systems. The algorithm is essentially based on the expansion of the functions in differential equation systems to Taylor series and substituting the matrix forms of these expansions into the given equation systems. Using the Mathematica program, the matrix equations are solved and the unknown Taylor coefficients are found approximately. The presented numerical approach is discussed on samples from various linear and non-linear differential equation systems as well as stiff systems. The computational data are then compared with those of some earlier numerical or exact results. As a result, this comparison demonstrates that the proposed method is accurate and reliable.