• Title/Summary/Keyword: Non-linear amplification

Search Result 36, Processing Time 0.022 seconds

Seismic analysis of tunnel considering the strain-dependent shear modulus and damping ratio of a Jointed rock mass (절리암반의 변형률 의존적 전단탄성계수 및 감쇠비 특성을 고려한 터널의 내진 해석)

  • Song, Ki-Il;Jung, Sung-Hoon;Cho, Gye-Chun;Lee, Jeong-Hark
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.4
    • /
    • pp.295-306
    • /
    • 2010
  • Contrary to an intact rock, the jointed rock mass shows strain-dependent deformation characteristics (elastic modulus and damping ratio). The maximum elastic modulus of a rock mass can be obtained from an elastic wave-based exploration in a small strain level and applied to seismic analyses. However, the assessment and application of the non-linear characteristics of rock masses in a small to medium strain level ($10^{-4}{\sim}0.5%$) have not been carried out yet. A non-linear dynamic analysis module is newly developed for FLAC3D to simulate strain-dependent shear modulus degradation and damping ratio amplification characteristics. The developed module is verified by analyzing the change of the Ricker wave propagation. Strain-dependent non-linear characteristics are obtained from disks of cored samples using a rock mass dynamic testing apparatus which can evaluate wave propagation characteristics in a jointed rock column. Using the experimental results and the developed non-linear dynamic module, seismic analyses are performed for the intersection of a shaft and an inclined tunnel. The numerical results show that vertical and horizontal displacements of non-linear analyses are larger than those of linear analyses. Also, non-linear analyses induce bigger bending compressive stresses acting on the lining. The bending compressive stress concentrates at the intersection part. The fundamental understanding of a strain-dependent jointed rock mass behavior is achieved in this study and the analytical procedure suggested can be effectively applied to field designs and analyses.

Seismic Response Analysis of a Base-Isolated Structure Supported on High Damping Rubber Bearings (고감쇠 면진베어링에 의해 지지된 면진구조물의 지진응답해석)

  • Yoo, Bong;Lee, Jae-Han;Koo, Gyeong-Hoi
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.99-106
    • /
    • 1995
  • The seismic responses of a base Isolated Pressurized Water Reactor(PWR) are investigated using a mathematical model which expresses the superstructure as a linear lumped mass-spring and the seismic Isolator as an equivalent spring-damper. Time history analyses are performed for the 1940 El Centre earthquake with linear amplification. In the analysis 5% of structural damping is used for the superstructure. The effects of high damping rubber bearing on seismic response of the superstructure in base isolated system are evaluated for four stiffness model types. The acceleration responses in base isolated PWR superstructure with high damping rubber bearings are much smaller than those in fixed base structure. In the higher strain region where stiffness behaves non-linearly, the acceleration responses modelled by one equivalent stiffness are smaller than those in nonlinear spring model, and the higher stiffness spring model of isolator exhibits larger peak acceleration response at superstructure in the frequency range above 2.0 Hz. when subjected to linearly amplified 1940 El Centre earthquake.

  • PDF

Stochastic response spectra for an actively-controlled structure

  • Mochio, Takashi
    • Structural Engineering and Mechanics
    • /
    • v.32 no.1
    • /
    • pp.179-191
    • /
    • 2009
  • A stochastic response spectrum method is proposed for simple evaluation of the structural response of an actively controlled aseismic structure. The response spectrum is constructed assuming a linear structure with an active mass damper (AMD) system, and an earthquake wave model given by the product of a non-stationary envelope function and a stationary Gaussian random process with Kanai-Tajimi power spectral density. The control design is executed using a linear quadratic Gaussian control strategy for an enlarged state space system, and the response amplification factor is given by the combination of the obtained statistical response values and extreme value theory. The response spectrum thus produced can be used for simple dynamical analyses. The response factors obtained by this method for a multi-degree-of-freedom structure are shown to be comparable with those determined by numerical simulations, demonstrating the validity and utility of the proposed technique as a simple design tool. This method is expected to be useful for engineers in the initial design stage for structures with active aseismic control.

Finite element simulation of traditional and earthquake resistant brick masonry building under shock loading

  • Daniel, A. Joshua;Dubey, R.N.
    • Coupled systems mechanics
    • /
    • v.4 no.1
    • /
    • pp.19-36
    • /
    • 2015
  • Modelling and analysis of a brick masonry building involves uncertainties like modelling assumptions and properties of local material. Therefore, it is necessary to perform a calibration to evaluate the dynamic properties of the structure. The response of the finite element model is improved by predicting the parameter by performing linear dynamic analysis on experimental data by comparing the acceleration. Further, a nonlinear dynamic analysis was also performed comparing the roof acceleration and damage pattern of the structure obtained analytically with the test findings. The roof accelerations obtained analytically were in good agreement with experimental roof accelerations. The damage patterns observed analytically after every shock were almost similar to that of experimental observations. Damage pattern with amplification in roof acceleration exhibit the potentiality of earthquake resistant measures in brick masonry models.

The clustering of critical points in the evolving cosmic web

  • Shim, Junsup;Codis, Sandrine;Pichon, Christophe;Pogosyan, Dmitri;Cadiou, Corentin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.47.2-47.2
    • /
    • 2021
  • Focusing on both small separations and baryonic acoustic oscillation scales, the cosmic evolution of the clustering properties of peak, void, wall, and filament-type critical points is measured using two-point correlation functions in ΛCDM dark matter simulations as a function of their relative rarity. A qualitative comparison to the corresponding theory for Gaussian random fields allows us to understand the following observed features: (i) the appearance of an exclusion zone at small separation, whose size depends both on rarity and signature (i.e. the number of negative eigenvalues) of the critical points involved; (ii) the amplification of the baryonic acoustic oscillation bump with rarity and its reversal for cross-correlations involving negatively biased critical points; (iii) the orientation-dependent small-separation divergence of the cross-correlations of peaks and filaments (respectively voids and walls) that reflects the relative loci of such points in the filament's (respectively wall's) eigenframe. The (cross-) correlations involving the most non-linear critical points (peaks, voids) display significant variation with redshift, while those involving less non-linear critical points seem mostly insensitive to redshift evolution, which should prove advantageous to model. The ratios of distances to the maxima of the peak-to-wall and peak-to-void over that of the peak-to-filament cross-correlation are ~2-√~2 and ~3-√~3WJ, respectively, which could be interpreted as the cosmic crystal being on average close to a cubic lattice. The insensitivity to redshift evolution suggests that the absolute and relative clustering of critical points could become a topologically robust alternative to standard clustering techniques when analysing upcoming surveys such as Euclid or Large Synoptic Survey Telescope (LSST).

  • PDF

The Gain and Phase Mismatch Detection Method with Closed Form Solution for LINC System Implementation (LINC 시스템 구현을 위한 닫힌 해를 갖는 크기 위상 오차 검출 기법)

  • Myoung, Seong-Sik;Lee, Il-Kyoo;Lim, Kyu-Tae;Yook, Jong-Gwan;Laskar, Joy
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.5
    • /
    • pp.547-555
    • /
    • 2008
  • This parer proposed the path mismatch detection and compensation algorithm with closed form for linear amplification with non-linear components(LINC) system implementation. The LINC system has a merit of using the high efficient amplifier by transferring the non-constant envelop signal which is high peak to average signal ratio into constant envelop signal. However, the performance degradation is very sensitive to the path mismatch such as an amplitude mismatch and a phase mismatch. In order to improve the path mismatch, the error detection and compensation method is introduced by the use of four test signals. Since the presented method has the closed form solution, the efficient and fast detection is available. The digital-IF structure of LINC system applied by the proposed error detection and compensation algorithm was implemented. The performance was evaluated with the IEEE 802.16 WiMAX baseband sinal which has 7 MHz channel bandwidth and 16-QAM. The Error Vector Magnitude(EVM) of -37.37 dB was obtained through performance test, which meets performance requirement of -24 dB EVM. As a result, the introduced error detection and compensation method was verified to improve the LINC system performance.

Numerical Analysis of the Two-Dimensional Pollutant Dispersion Over Hilly Terrain (산지 내 오염물질 확산의 2차원 수치해석)

  • 김현구;이정묵
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.5
    • /
    • pp.383-396
    • /
    • 1997
  • Numerical prediction of the pollutant dispersion over a two-dimensional hilly terrain is presented. The dispersion model used in the present work is based on the gradient diffusion theory and the finite-volume method on a non-orthogonal boundary-fitted grid system. The numerical model is validated by comparing the results with the available experimental data for the flat-floor dispersion within a turbulent boundary-layer. The numerical error analysis is performed based on the guideline of Kasibhatla et al.(1988) for the elevated-source dispersion in the flat-floor boundary layer having a power-law velocity and linear eddy-diffusivity profile. The influences of the two-dimensional hilly terrain on the dispersion from a continuously released source are numerically investigated by changing the emission locations and heights. It is found that the distributions of ground-level concentration are strongly influenced by the source location and the emission height. Hence, the terrain amplification factor is greatly enhanced when the pollutant source is located within a flow separation region. Dispersion from a source of short duration is also simulated and the duration time of the pollutant is compared at several downstream locations on a hilly terrain. The results of the numerical prediction are applied to the evaluation of environmental impacts due to the automobile exhausts at the seashore highway with a parallel mountain range.

  • PDF

Performance Analysis of Wireless Internet System of WiBro Employing the Uplink Single Carrier Scheme (무선 인터넷 WiBro 시스템을 위한 단일 반송파 상향 링크 시스템의 제안 및 특성분석)

  • Kim, Jeong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7A
    • /
    • pp.755-761
    • /
    • 2007
  • In this paper the uplink single carrier scheme is proposed for wireless Internet application and its performance is evaluated in terms of PAPR (peak to average power ratio) and ABR (achievable bit rate) compared with the uplink OFDM scheme. There exist constraints regarding the signal amplification because the non-linear amplifier should be exploited instead of the linear amplifier due to its high cost of linear amplifier and power inefficiency at the WiBro terminal. Therefore characteristics in the uplink scheme design are discussed in order to maximize ABR and relieve the requirements for the amplifier specifications.

Response of non-structural components mounted on irregular RC buildings: comparison between FE and EC8 predictions

  • Aldeka, Ayad B.;Chan, Andrew H.C.;Dirar, Samir
    • Earthquakes and Structures
    • /
    • v.6 no.4
    • /
    • pp.351-373
    • /
    • 2014
  • This paper investigates the seismic response of lightweight acceleration-sensitive non-structural components (NSCs) mounted on irregular reinforced concrete (RC) primary structures (P-structures) using non-linear dynamic finite element (FE) analysis. The aim of this paper is to study the influence of NSC to P-structure vibration period ratio, peak ground acceleration, NSC to P-structure height ratio, and P-structure torsional behaviour on the seismic response of the NSCs. Representative constitutive models were used to simulate the behaviour of the RC P-structures. The NSCs were modelled as vertical cantilevers fixed at their bases with masses on the free ends and varying lengths so as to match the frequencies of the P-structures. Full dynamic interaction is considered between the NSCs and P-structures. A set of 21 natural and artificial earthquake records were used to evaluate the seismic response of the NSCs. The numerical results indicate that the behaviour of the NSCs is significantly influenced by the investigated parameters. Comparison between the FE results and Eurocode (EC8) predictions suggests that EC8 underestimates the response of NSCs mounted on the flexible sides of irregular RC P-structures when the fundamental periods and heights of the NSCs match those of the P-structures. The perceived cause of this discrepancy is that EC8 does not take into account the amplification in the dynamic response of NSCs induced by the torsional behaviour of RC P-structures.

Wave Interaction with a Porous Circular Cylinder of Non-Uniform Porosity (비 균일한 공극율을 갖는 투과성 원기둥과 파의 상호작용)

  • Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.23-31
    • /
    • 2009
  • The interaction of incident monochromatic waves with a bottom-mounted vertical porous circular cylinder is investigated using the framework of the three-dimensional linear potential theory. The porosity of the circular cylinder is uniform vertically but varies in the circumferential direction. By adjusting the porosities of the circular cylinder, both the wave blocking performance of a porous semi-circular breakwater and the wave responses inside a circular harbor with an entrance are applied as calculation examples. It is found that the reflected waves, wave run-up, and wave forces are significantly reduced due to wall porosity, which are positive factors for a breakwater, and the amplification factor of a circular harbor at resonant frequencies is greatly reduced by a porous sidewall.