• 제목/요약/키워드: Non-linear Vibration

검색결과 403건 처리시간 0.03초

극저온 냉동기 헬륨 압축기용 선형 탄성 베어링의 해석 및 설계 (Design and analysis of a newly devised linear flexure bearing(KIMM-Ml) for cryogenic compressors)

  • 조영선;최상규;박성제;김효봉;우호길
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.1091-1098
    • /
    • 2003
  • Flexure bearings have been used in linear-resonant compressors to maintain a non-contacting clearance seal between the piston and cylinder. There are two types of tangential cantilever bearing and spiral arm bearing with flexure bearings. A newly devised linear flexure bearing (KIMM-Ml) for compression refrigeration machines is disclosed having improved tight gas clearance maintaining capability for better system performance. KIMM-Ml is an integrated device comprising an axially moving diaphragm with circumferentially arranged arc-shaped flexure blades secured between rim and hub spacers, which turn out to have higher radial stiffness than the one with circumferential tangential cantilever flexure blades. It is expected for KIMM-Ml to play a key role in designing long life, special purpose compression refrigeration machines by providing frictionless, non-wearing, linear movement and radial support for the machines as well as a gas clearance seal by maintaining extremely tight clearances between piston and cylinder.

  • PDF

비원형 단면의 선삭 가공시 발생하는 진동해석 (Vibration Analysis of a Lathe Performing Non-Circular Cutting)

  • 신응수;박정호
    • 소음진동
    • /
    • 제10권2호
    • /
    • pp.291-298
    • /
    • 2000
  • This paper intends to provide an analytic vibrational model of non-circular cutting by a lathe and to investigate its stability criteria. A single degree-of-freedon model based on the orthogonal cutting theory has the characteristics of parametric excitation due to the nonlinear cutting force that changes periodically its direction as well as its magnitude. The Floquet theory has been applied to investigate the stability of the linearized system and the stability diagrams have been obtained with respect to the ovality, the cut velocity and the cut depth. Also nonlinear analysis has been performed to verify the linear analysis and compare the results with those from circular cutting. Results show that a critical cut depth is decreased as the ovality is increased while a critical cut velocity is increased as the ovality is increased. Also, a good agreement in critical conditions has been observed between the linear and nonlinear analyses for the ovality less than 2%. Accordingly, the linear analysis can be said to be applicable for most practical oval cuttings whose ovality are much less than 2%.

  • PDF

비균질 탄성지반 위에 놓인 곡선보의 자유진동 (Free Vibrations of Curved Beams on Non-homogeneous Elastic Foundation)

  • 이병구;이태은
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.989-993
    • /
    • 2001
  • This paper deals with the free vibrations of horizontally curved beams supported by non-homogeneous elastic foundation. Taking into account the effects of rotatory inertia and shear deformation, differential equations governing the free vibrations of such beams are derived, in which the linear elastic foundation is considered as the non-homogeneous foundation. Differential equations are solved numerically to calculate natural frequencies. In numerical examples, the parabolic curved member is considered. The parametric studies are conducted and the lowest four frequency parameters are reported in tables and figures as the non-dimensional forms.

  • PDF

유체를 이송하는 양단 고정된 반원관의 면내/면외 진동 특성 (Vibration Characteristics of a Semi-circular Pipe Conveying Fluid with Both Ends Clamped)

  • 정두한;정진태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.252-257
    • /
    • 2004
  • Free vibration of a semi-circular pipe conveying fluid is analyzed when the pipe is clamped at both ends. To consider the geometric non-linearity, this study adopts the Lagrange strain theory and the extensibility of the pipe. By using the extended Hamilton principle, the non-linear partial differential equations are derived, which are coupled to the in-plane and out-of\ulcornerplant: motions. To investigate the vibration characteristics of the system, the discretized equations of motion are derived from the Galerkin method. The natural frequencies are computed from the linearized equations of motion in the neighborhood of the equilibrium position. From the results. the natural frequencies for the in-plane and out-of-plane motions are vary with the flow velocity. However, no instability occurs the semi-circular pipe with both ends clamped, when taking into account the geometric non-linearity explained by the Lagrange strain theory.

  • PDF

Non-linear free vibrations and post-buckling analysis of shear flexible functionally graded beams

  • Anandrao, K. Sanjay;Gupta, R.K.;Ramchandran, P.;Rao, G. Venkateswara
    • Structural Engineering and Mechanics
    • /
    • 제44권3호
    • /
    • pp.339-361
    • /
    • 2012
  • Large amplitude free vibration and thermal post-buckling of shear flexible Functionally Graded Material (FGM) beams is studied using finite element formulation based on first order Timoshenko beam theory. Classical boundary conditions are considered. The ends are assumed to be axially immovable. The von-Karman type strain-displacement relations are used to account for geometric non-linearity. For all the boundary conditions considered, hardening type of non-linearity is observed. For large amplitude vibration of FGM beams, a comprehensive study has been carried out with various lengths to height ratios, maximum lateral amplitude to radius of gyration ratios, volume fraction exponents and boundary conditions. It is observed that, for FGM beams, the non-linear frequencies are dependent on the sign of the vibration amplitudes. For thermal post-buckling of FGM beams, the effect of shear flexibility on the structural response is discussed in detail for different volume fraction exponents, length to height ratios and boundary conditions. The effect of shear flexibility is observed to be predominant for clamped beam as compared to simply supported beam.

속도 압력항의 마찰 기인 4 자유도계 시스템의 자려진동에 대한 연구 (The study on the 4-dof friction induced self-oscillation system with friction coefficient of velocity and pressure)

  • 조용구;신기홍;이정윤;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.255-261
    • /
    • 2002
  • A four-degree of freedom model is suggested to understand the basic dynamical behaviors of the normal interaction between two masses of the friction induced normal vibration system. The two masses may be considered as the pad and the disk of the brake. The phase space analysis is performed to understand complicated in-plane dynamics of the non-linear model. Attractors in the phase space are examined for various conditions of the parameters. In certain conditions, the attractor becomes a limit cycle showing the stick-slip phenomena. In this paper, on the basis of the in-plane motion not only the existence of the limit cycle but also the size of the limit cycle is examined o demonstrate the non-linear dynamics that leads the unstable state and then the normal vibration is investigated as the state of the in-plane motion For only one case of the system frequency(two masses with same natural frequencies), the propensity of the normal vibration is discussed in detail. The results show an important fact that it may be not effective when too much damping is present in the only one part of the masses.

  • PDF

고차 주파수응답함수를 이용한 비선형시스템의 매개변수 추정 (Use of Higher Order Frequency Response Functions for Non-Linear Parameter Estimation)

  • 이건명
    • 소음진동
    • /
    • 제7권2호
    • /
    • pp.223-229
    • /
    • 1997
  • Presented is a method to estimate system parameters of a system with polynomial non-linerities from the measured higher order frequency response functions. Higher order FRFs can be measured on some restricted regions by sinusoidally exciting a non-linear system with various input amplitudes and measuring the response component at the excitation frequency. These higher order FRFs can be expressed in terms of system parameter, and the system parameters can be estimated from the measured FRFs. Since the expressions for higher order FRFs are complicated, system parameters can be estimated from them using an optimization technique. The present method has been applied to a simulated single degree of freedom system with non-linear stiffness and damping, and has estimated accurate system parameters.

  • PDF

On the large amplitude free vibrations of axially loaded Euler-Bernoulli beams

  • Bayat, Mahmoud;Pakar, Iman;Bayat, Mahdi
    • Steel and Composite Structures
    • /
    • 제14권1호
    • /
    • pp.73-83
    • /
    • 2013
  • In this paper Hamiltonian Approach (HA) have been used to analysis the nonlinear free vibration of Simply-Supported (S-S) and for the Clamped-Clamped (C-C) Euler-Bernoulli beams fixed at one end subjected to the axial loads. First we used Galerkin's method to obtain an ordinary differential equation from the governing nonlinear partial differential equation. The effect of different parameter such as variation of amplitude to the obtained on the non-linear frequency is considered. Comparison of HA with Runge-Kutta 4th leads to highly accurate solutions. It is predicted that Hamiltonian Approach can be applied easily for nonlinear problems in engineering.

브레이크 저더에 대한 전달계 민감도 해석 (Sensitivity Analysis of Transfer Mechanism to Brake Judder)

  • 심경석;박태원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.401-406
    • /
    • 2011
  • The abnormal vibration from the BTV(Brake Torque Variation) and DTV(Disc Thickness Variation) is transferred to the suspension and steering system during braking. In this paper, judder simulation is carried out using multi-body dynamic analysis program to analyze the relation of the judder and transfer mechanism which is composed of the suspension and steering system. In order to analyze the brake judder transfer system, the full vehicle model was composed with rigid body, non-linear bushing, non-linear constraints and joints. Full vehicle model analysis was compared by actual vehicle judder test and sensitivity analysis of the suspension system is carried out.

  • PDF

기하학적 비선형성을 고려한 유체를 수송하는 반원관의 면내운동에 대한 진동 해석 (Vibration Analysis for the In-plane Motions of a Semi-Circular Pipe Conveying Fluid Considering the Geometric Nonlinearity)

  • 정진태;정두한
    • 대한기계학회논문집A
    • /
    • 제28권12호
    • /
    • pp.2012-2018
    • /
    • 2004
  • The vibration of a semi-circular pipe conveying fluid is studied when the pipe is clamped at both ends. To consider the geometric nonlinearity, this study adopts the Lagrange strain theory for large deformation and the extensible dynamics based on the Euler-Bernoulli beam theory for slenderness assumption. By using the Hamilton principle, the non-linear partial differential equations are derived for the in-plane motions of the pipe, considering the fluid inertia forces as a kind of non-conservative forces. The linear and non-linear terms in the governing equations are compared with those in the previous study, and some significant differences are discussed. To investigate the dynamic characteristics of the system, the discretized equations of motion are derived from the Galerkin method. The natural frequencies varying with the flow velocity are computed from the two cases, which one is the linear problem and the other is the linearized problem in the neighborhood of the equilibrium position. Finally, the time responses at various flow velocities are directly computed by using the generalized-$\alpha$ method. From these results, we should consider the geometric nonlinearity to analyze dynamics of a semi-circular pipe conveying fluid more precisely.