• Title/Summary/Keyword: Non-linear Vibration

Search Result 403, Processing Time 0.022 seconds

Free Vibrations of Circular Strip Foundations with Variable Breadth (변화폭 원호형 띠기초의 자유진동)

  • Lee, Byong-Koo;Huh, Young;Lee, Jong-Kook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.230-235
    • /
    • 2004
  • This paper deals with the free vibration analysis of circular strip foundations with the variable breadth. Taking into account effects of both rotatory inertia and shear deformation, differential equations governing free vibrations of such foundations are derived. The Winkler foundation is chosen as the model of soil foundation. The breadth of strip foundation is assumed to be a linear function. The differential equations are solved numerically to calculate natural frequencies. In numerical examples, the strip foundations with the hinged-hinged, hinged-clamped. clamped-hinged and clamped-clamped end constraints are considered. The parametric studies are conducted and the lowest four frequency parameters are reported in figures as the non-dimensional forms.

Efficient Super-element Structural Vibration Analyses of a Large Wind-turbine Rotor Blade Considering Rotational and Aerodynamic Load Effects (회전 및 풍하중 가진 효과를 고려한 대형 풍력발전 로터의 효율적인 슈퍼요소 구조진동해석)

  • Kim, Dong-Man;Kim, Dong-Hyun;Park, Kang-Kyun;Kim, Yu-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.651-658
    • /
    • 2009
  • In this study, computer applied engineering(CAE) techniques are fully used to efficiently conduct structural and dynamic analyses of a huge composite rotor blade using super-element. Computational fluid dynamics(CFD) is used to predict aerodynamic loads of the rotating wind-turbine blade. Structural vibration analysis is conducted based on the non-linear finite element method for composite laminates and multi-body dynamic simulation tools. Various numerical results are presented for comparison and the structural dynamic behaviors of the rotor blade are investigated herein.

Free Vibrations of Cantilever Arches with Constant Volume (일정체적 캔틸레버 아치의 자유진동)

  • Lee, Byoung-Koo;Lee, Tae-Eun;Yoon, Hee-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1169-1172
    • /
    • 2007
  • This paper deals with the free vibrations of cantilever arches with constant volume. Its cross-sectional shape is the regular polygon whose depth is varied with the linear functional fashion. The non-dimensional differential equations governing the free vibration of such arch are derived and solved numerically for calculating the natural frequencies. As the numerical results, the effects of arch parameters such as side number of cross section, section ratio and aspect ratio on the natural frequencies are reported in figures.

  • PDF

Accurate analytical solution for nonlinear free vibration of beams

  • Bayat, M.;Pakar, I.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.3
    • /
    • pp.337-347
    • /
    • 2012
  • In this study, Hamiltonian Approach (HA) is applied to analysis the nonlinear free vibration of beams. Two well-known examples are illustrated to show the efficiency of this method. One of them deals with the Nonlinear vibration of an electrostatically actuated microbeam and the other is the nonlinear vibrations of tapered beams. This new approach prepares us to achieve the beam's natural frequencies and mode shapes easily and a rapidly convergent sequence is obtained during the solution. The effects of the small parameters on the frequency of the beams are discussed. Some comparisons are conducted between the results obtained by the Hamiltonian Approach (HA) and numerical solutions using to illustrate the effectiveness and convenience of the proposed methods.

Accurate semi-analytical solution for nonlinear vibration of conservative mechanical problems

  • Bayat, Mahmoud;Pakar, Iman
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.657-661
    • /
    • 2017
  • In this paper, it has been tried to propose a new semi analytical approach for solving nonlinear vibration of conservative systems. Hamiltonian approach is presented and applied to high nonlinear vibration systems. Hamiltonian approach leads us to high accurate solution using only one iteration. The method doesn't need any small perturbation and sufficiently accurate to both linear and nonlinear problems in engineering. The results are compared with numerical solution using Runge-Kutta-algorithm. The procedure of numerical solution are presented in detail. Hamiltonian approach could be simply apply to other powerfully non-natural oscillations and it could be found widely feasible in engineering and science.

Static and free vibration analysis of shallow sagging inclined cables

  • Li, Zhi-Jiang;Li, Peng;He, Zeng;Cao, Ping
    • Structural Engineering and Mechanics
    • /
    • v.45 no.2
    • /
    • pp.145-157
    • /
    • 2013
  • Based on link-model, we conducted a static analysis and computation of a three-span suspended cable structure in the present paper, and obtained the static configuration and tension distribution of the cable. Using the link and beam model based on finite element method, we analyzed the vibration modal of three-span suspended cable structure, and compared with the results obtained from ANSYS using link and beam element. The vibration modals of shallow sagging inclined cables calculated from proposed method agrees well with ANSYS results, which validates the proposed method. As a result, the influence of bend stiffness on in-plane natural frequencies is much greater than that on out-of-plane natural frequencies of inclined cables.

Nonlinear thermal vibration of FGM beams resting on nonlinear viscoelastic foundation

  • Alimoradzadeh, M.;Akbas, S.D.
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.557-567
    • /
    • 2022
  • Nonlinear free vibration analysis of a functionally graded beam resting on the nonlinear viscoelastic foundation is studied with uniform temperature rising. The non-linear strain-displacement relationship is considered in the finite strain theory. The governing nonlinear dynamic equation is derived based on the finite strain theory with using of Hamilton's principle. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The influences of temperature rising, material distribution parameter, nonlinear viscoelastic foundation parameters on the nonlinear free response and phase trajectory are investigated. In this paper, it is aimed that a contribution to the literature for nonlinear thermal vibration solutions of a functionally graded beam resting on the nonlinear viscoelastic foundation by using of multiple time scale method.

Experimental and numerical analysis of the global behaviour of the 1:9 scale model of the Old Bridge in Mostar

  • Kustura, Mladen;Smoljanovic, Hrvoje;Nikolic, Zeljana;Krstevska, Lidija
    • Coupled systems mechanics
    • /
    • v.10 no.1
    • /
    • pp.1-19
    • /
    • 2021
  • Composite nature of the masonry structures in general causes complex and non-linear behaviour, especially in intense vibration conditions. The presence of different types and forms of structural elements and different materials is a major problem for the analysis of these type of structures. For this reason, the analysis of the behaviour of masonry structures requires a combination of experimental tests and non-linear mathematical modelling. The famous UNESCO Heritage Old Bridge in Mostar was selected as an example for the analysis of the global behaviour of reinforced stone arch masonry bridges. As part of the experimental research, a model of the Old Bridge was constructed in a scale of 1:9 and tested on a shaking table platform for different levels of seismic excitation. Non-linear mathematical modelling was performed using a combined finite-discrete element method (FDEM), including the effect of connection elements. The paper presents the horizontal displacement of the top of the arch and the failure mechanism of the Old Bridge model for the experimental and the numerical phase, as well as the comparison of the results. This research provided a clearer insight into the global behaviour of stone arch masonry structures reinforced with steel clamps and steel dowels, which is significant for the structures classified as world cultural heritage.

Vibration Analysis of Planar Cable-Driven Parallel Robot Configurations (평면형 케이블 구동 병렬로봇의 구조에 따른 진동분석)

  • Piao, Jinlong;Jung, Jinwoo;Jin, Xuejun;Park, Sukho;Park, Jong-Oh;Ko, Seong Young
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.2
    • /
    • pp.73-82
    • /
    • 2016
  • This paper focuses on the vibration analysis of planar cable-driven parallel robots on their configurations. Despite of many advantages of the cable robots, elasticity of the cables may cause the vibration at the existence of external disturbance, resulting in deterioration of positioning accuracy. According to the vibration theory, having high first order natural frequency can prevent resonance with low frequency disturbance from the surrounding environment. A series of simulations showed that choosing frame / end-effector shape and cable connection method affects robots' natural frequency. For the precise simulation, the cables are modeled as linear springs and axial vibration of cables is mainly considered. Aspect ratios of the frame and end-effector are defined as non-dimensional parameters while their areas are fixed. It was shown that vibration analysis guides to design a planar cable robot in terms of high capacity to reduce vibration.

Fault Diagnosis for Rotating Machinery with Clearance using HHT (HHT를 이용한 간극이 있는 회전체의 고장진단)

  • Lee, Seung-Mock;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.895-902
    • /
    • 2007
  • Rotating machinery has two typical faults with clearance, one is partial rub and the other is looseness. Due to these faults, non-linear and non-stationary signals are occurred. Therefore, time-frequency analysis is necessary for exact fault diagnosis of rotating machinery. In this paper newly developed time-frequency analysis method, HHT(Hilbert-Huang Transform) is applied to fault diagnosis and compared with other method of FFT, SFFT and CWT. The results show that HHT can represent better resolution than any other method. Consequently, the faults of rotating machinery are diagnosed efficiently by using HHT.

  • PDF