• Title/Summary/Keyword: Non-linear Vibration

Search Result 403, Processing Time 0.032 seconds

Application of Numerical Differentiations in Free Vibration Analysis (자유진동 해석에서 수치미분의 응용)

  • 이병구;안대순;강희종;김권식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.814-818
    • /
    • 2003
  • This paper deals with the application of numerical differentiation in free vibration analysis. In the free vibration analysis, the derivative values of the given function are certainly used in calculation of structural parameters. For deriving the derivative values, both the time and labor are needed when the structures consist of non-linear geometries such as arches or curved beams. From this viewpoint, the numerical differentiation scheme is applied into the free vibration analysis. The numerical results obtained from the numerical differentiations are agreed very well with those obtained from the exact derivatives by analytical method. It is expected that the numerical differentiations can be utilized practically in the free vibration analysis.

  • PDF

Design and analysis of a newly devised linear flexure bearing(KIMM-LFB) for small precision reciprocating machines (소형 정밀 왕복동기기용 선형 탄성 베어링 모델(KIMM-LFB)의 설계 및 해석)

  • Choi, S.K.;Park, S.J.;Hong, Y.J.;Kim, H.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.404-409
    • /
    • 2002
  • A newly devised linear flexure bearing (KIMM-LFB) for reciprocating machines is disclosed having improved tight gas clearance maintaining capability for better system performance. KIMM-LFB is an integrated device comprising an axially moving diaphragm with circumferentially arranged arc-shaped flexure blades secured between rim and hub spacers, which turn out to have higher radial stiffness than the one with circumferential tangent cantilever flexure blades. It is expected for KIMM-LFB to play a key role in designing long life, special purpose reciprocating machines such as spacecraft borne cryogenic refrigerators (cryocoolers) by providing frictionless, non-wearing, linear movement and radial support for the machines as well as a gas clearance seal by maintaining extremely tight clearances between piston and cylinder.

  • PDF

Linear-Impact Behaviour of PWR Fuel Assembly (시간적분법을 이용한 경수로 핵연료집합체의 선형충격 거동해석)

  • Yim, J.S.;Sohn, D.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.627-632
    • /
    • 2000
  • A finite element model for the transient dynamic analysis of a PWR fuel assembly was developed and programmed as a name of DAMASS. The Newmark time integration method was used to solve the governing equation of motion. Results of the program was compared with those of ANSYS in terms of displacement and impact forces to show the validity of the model. Up to now it has capability of solving the linear impact of FA(s) and it will be extended to the non-linear analysis of a FA in the future.

  • PDF

A Study on Adjustment Optimization for Dynamic Balancing Test of Helicopter Main Rotor Blade (헬리콥터 주로터 블레이드 동적밸런싱 시험을 위한 조절변수 최적화 연구)

  • Song, KeunWoong;Choi, JongSoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.736-743
    • /
    • 2016
  • This study describes optimization methods for adjustment of helicopter main rotor tracking and balancing (RTB). RTB is a essential process for helicopter operation and maintenance. Linear and non-linear models were developed with past RTB test results for estimation of RTB adjustment. Then global and sequential optimization methods were applied to the each of models. Utilization of the individual optimization method with each model is hard to fulfill the RTB requirements because of different characteristics of each blade. Therefore an ensemble model was used to integrate every estimated adjustment result, and an adaptive method was also applied to adjustment values of the linear model to update for next estimations. The goal of this developed RTB adjustment optimization program is to achieve the requirements within 2 run. Additional tests for comparison of weight factor of the ensemble model are however necessary.

Instability and vibration analyses of FG cylindrical panels under parabolic axial compressions

  • Kumar, Rajesh;Dey, Tanish;Panda, Sarat K.
    • Steel and Composite Structures
    • /
    • v.31 no.2
    • /
    • pp.187-199
    • /
    • 2019
  • This paper presents the semi-analytical development of the dynamic instability behavior and the dynamic response of functionally graded (FG) cylindrical shallow shell panel subjected to different type of periodic axial compression. First, in prebuckling analysis, the stresses distribution within the panels are determined for respective loading type and these stresses are used to study the dynamic instability behavior and the dynamic response. The prebuckling stresses within the shell panel are the same as applied in-plane edge loading for the case of uniform and linearly varying loadings. However, this is not true for the case of parabolic loadings. The parabolic edge loading produces all the stresses (${\sigma}_{xx}$, ${\sigma}_{yy}$ and ${\tau}_{xy}$) within the FG cylindrical panel. These stresses are evaluated by minimizing the membrane energy via Ritz method. Using these stresses the partial differential equations of FG cylindrical panel are formulated by applying Hamilton's principal assuming higher order shear deformation theory (HSDT) and von-$K{\acute{a}}rm{\acute{a}}n$ non-linearity. The non-linear governing partial differential equations are converted into a set of Mathieu-Hill equations via Galerkin's method. Bolotin method is adopted to trace the boundaries of instability regions. The linear and non-linear dynamic responses in stable and unstable region are plotted to know the characteristics of instability regions of FG cylindrical panel. Moreover, the non-linear frequency-amplitude responses are obtained using Incremental Harmonic Balance (IHB) method.

A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate

  • Tounsi, Abdelouahed;Houari, Mohammed Sid Ahmed;Bessaim, Aicha
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.547-565
    • /
    • 2016
  • In this work a new 3-unknown non-polynomial shear deformation theory for the buckling and vibration analyses of functionally graded material (FGM) sandwich plates is presented. The present theory accounts for non-linear in plane displacement and constant transverse displacement through the plate thickness, complies with plate surface boundary conditions, and in this manner a shear correction factor is not required. The main advantage of this theory is that, in addition to including the shear deformation effect, the displacement field is modelled with only 3 unknowns as the case of the classical plate theory (CPT) and which is even less than the first order shear deformation theory (FSDT). The plate properties are assumed to vary according to a power law distribution of the volume fraction of the constituents. Equations of motion are derived from the Hamilton's principle. Analytical solutions of natural frequency and critical buckling load for functionally graded sandwich plates are obtained using the Navier solution. The results obtained for plate with various thickness ratios using the present non-polynomial plate theory are not only substantially more accurate than those obtained using the classical plate theory, but are almost comparable to those obtained using higher order theories with more number of unknown functions.

Small scale effect on the vibration of non-uniform nanoplates

  • Chakraverty, S.;Behera, Laxmi
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.495-510
    • /
    • 2015
  • Free vibration of non-uniform embedded nanoplates based on classical (Kirchhoff's) plate theory in conjunction with nonlocal elasticity theory has been studied. The nanoplate is assumed to be rested on two-parameter Winkler-Pasternak elastic foundation. Non-uniform material properties of nanoplates have been considered by taking linear as well as quadratic variations of Young's modulus and density along the space coordinates. Detailed analysis has been reported for all possible casesof such variations. Trial functions denoting transverse deflection of the plate are expressed in simple algebraic polynomial forms. Application of the present method converts the problem into generalised eigen value problem. The study aims to investigate the effects of non-uniform parameter, elastic foundation, nonlocal parameter, boundary condition, aspect ratio and length of nanoplates on the frequency parameters. Three-dimensional mode shapes for some of the boundary conditions have also been illustrated. One may note that present method is easier to handle any sets of boundary conditions at the edges.

One to One Resonance on the Quadrangle Cantilever Beam (정사각형 외팔보에서의 일대일 공진)

  • Kim, Myoung-Gu;Pak, Chul-Hui;Cho, Chong-Du
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.851-858
    • /
    • 2005
  • The response characteristics of one to one resonance on the quadrangle cantilever beam in which basic harmonic excitations are applied by nonlinear coupled differential-integral equations are studied. This equations have 3-dimensional non-linearity of nonlinear inertia and nonlinear curvature. Galerkin and multi scale methods are used for theoretical approach to one-to-one internal resonance. Nonlinear response characteristics of 1st, 2nd, 3rd modes are measured from the experiment for basic harmonic excitation. From the experimental result, geometrical terms of non-linearity display light spring effect and these terms play an important role in the response characteristics of low frequency modes. Nonlinear nitration in the out of plane are also studied.

The Study on Vibration Characteristics of Rub-impact Rotor Based on Virtual Prototype Technology and Experiments

  • HAN, Tian;YIN, Zhongjun;WANG, Jianfeng;Choi, ByeongKeun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.382-387
    • /
    • 2012
  • A virtual prototype (VP) model of the rotor-to-stator rub of the rotor system is established to study the nonlinear vibration characteristics. The non-linear bearing stiffness is considered to approximate to an actual system in the model. In order to validate the effectiveness of the proposed approach, a special structure of stator is designed to simulate different kinds of rub condition. The results of experiment are well consistent with the results of simulation by VP. The vibration characteristics of rub-impact are well observed by VP model under different conditions. Based on the validated model, the torsional vibration of rub-impact is discussed. The contribution of this paper is to provide one new approach to study rub-impact problem. Based on the validated VP model, the more research can be done for incident fault identification.

  • PDF

Flapwise and non-local bending vibration of the rotating beams

  • Mohammadnejad, Mehrdad;Saffari, Hamed
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.229-244
    • /
    • 2019
  • Weak form integral equations are developed to investigate the flapwise bending vibration of the rotating beams. Rayleigh and Eringen nonlocal elasticity theories are used to investigate the rotatory inertia and Size-dependency effects on the flapwise bending vibration of the rotating cantilever beams, respectively. Through repetitive integrations, the governing partial differential equations are converted into weak form integral equations. The novelty of the presented approach is the approximation of the mode shape function by a power series which converts the equations into solvable one. Substitution of the power series into weak form integral equations results in a system of linear algebraic equations. The natural frequencies are determined by calculation of the non-trivial solution for resulting system of equations. Accuracy of the proposed method is verified through several numerical examples, in which the influence of the geometry properties, rotatory inertia, rotational speed, taper ratio and size-dependency are investigated on the natural frequencies of the rotating beam. Application of the weak form integral equations has made the solution simpler and shorter in the mathematical process. Presented relations can be used to obtain a close-form solution for quick calculation of the first five natural frequencies of the beams with flapwise vibration and non-local effects. The analysis results are compared with those obtained from other available published references.