• Title/Summary/Keyword: Non-linear Vibration

Search Result 403, Processing Time 0.026 seconds

Analysis of non-homogeneous orthotropic plates using EDQM

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.295-316
    • /
    • 2017
  • Element based differential quadrature method (EDQM) has been applied to analyze static, stability and free vibration of non-homogeneous orthotropic rectangular plates of variable or stepped thickness. The Young's modulus and the density are assumed to vary in exponential form in X-direction whereas the thickness is assumed to vary linear, parabolic or exponential variation in one or two directions. In-plane loading is assumed to vary linearly. Various combinations of clamped, simply supported and free edge conditions (regular and irregular boundary) have been considered. Continuous plates could also be handled with ease. In this paper, formulation for equilibrium, buckling and free vibration problems is discussed and several numerical examples are solved using EDQM and compared with the published results.

Wave Transmission Approach of Coupled Plate Structures through Non-conservative Joints for Power Flow Analysis (파워흐름해석을 위한 비보존 조인트로 연성된 평판 구조물의 파워투과반사계수 해석)

  • Song, J-H;Hong, S-Y;Park, Y-H;Park, D-H;Kil, H-G
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.353.2-353
    • /
    • 2002
  • The attenuation of waves transmitted through non-conservative joints that are shown in many practical structures, is affected by the impedance and the orientation of the joint. In this paper, the joints between plate structures are assumed to be modeled as linear spring-dashpot systems and the transmission and reflection of vibration energy in the medium to high frequency ranges are investigated. (omitted)

  • PDF

A Study on the Application of SVD to an Inverse Problem in a Cantilever Beam with a Non-minimum Phase (비최소 위상을 갖는 외팔보에서 SVD를 이용한 역변환 문제에 관한 연구)

  • 이상권;노경래;박진호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.9
    • /
    • pp.431-438
    • /
    • 2001
  • This paper present experimental results of source identification for non-minimum phase system. Generally, a causal linear system may be described by matrix form. The inverse problem is considered as a matrix inversion. Direct inverse method can\`t be applied for a non-minimum phase system, the reason is that the system has ill-conditioning. Therefore, in this study to execute an effective inversion, SVD inverse technique is introduced. In a Non-minimum phase system, its system matrix may be singular or near-singular and has one more very small singular values. These very small singular values have information about a phase of the system and ill-conditioning. Using this property we could solve the ill-conditioned problem of the system and then verified it for the practical system(cantilever beam). The experimental results show that SVD inverse technique works well for non-minimum phase system.

  • PDF

An Empirical Acoustic Impedance Model for the Design of Acoustic Resonator with Extended Neck at a High Pressure Environment (높은 음압에서의 내부 확장관형 음향 공명기의 설계를 위한 실험적 음향 임피던스 모델)

  • Park, Soon-Hong;Seo, Sang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1199-1205
    • /
    • 2012
  • An empirical acoustic impedance model of acoustic resonators with extended neck at a high sound pressure environment is proposed. The acoustic resonator with extended neck into its cavity is appropriate for the launcher fairing application because the length of neck does not increase the total height of the resonator. This enables one to design slim and light acoustic resonators for launch vehicles. The suggested acoustic impedance model considers the incident pressure and geometric variables(the neck length, the perforation ratio and the hole diameter) in terms of non-dimensional variables. Several acoustic resonators with extended neck are manufactured and their wall impedances are measured according to the pre-defined incident pressure levels. Effects of non-dimensional variables on the non-linear acoustic impedance are investigated so that a simple non-linear impedance model for the launcher fairing application can be proposed. It is demonstrated that the estimated acoustic resistance and acoustic length correction show reasonable agreement with the measured ones within the range of design parameters for launcher fairings.

Lane Detection on Non-flat Road Using Piecewise Linear Model (굴곡진 도로에서의 구간 선형 모델을 이용한 차선 검출)

  • Jeong, Min-Young;Kim, Gyeonghwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.6
    • /
    • pp.322-332
    • /
    • 2014
  • This paper proposes a robust lane detection algorithm for non-flat roads by combining a piecewise linear model and dynamic programming. Compared with other lane models, the piecewise linear model can represent 3D shapes of roads from the scenes acquired by monocular camera since it can form a curved surface through a set of planar road. To represent the real road, the planar roads are created by various angles and positions at each section. And dynamic programming determines an optimal combination of planar roads based on lane properties. Experiment results demonstrate the robustness of proposed algorithm against non-flat road, curved road, and camera vibration.

Health monitoring of a historical monument in Jordan based on ambient vibration test

  • Bani-Hani, Khaldoon A.;Zibdeh, Hazem S.;Hamdaoui, Karim
    • Smart Structures and Systems
    • /
    • v.4 no.2
    • /
    • pp.195-208
    • /
    • 2008
  • This paper summarizes the experimental vibration-based structural health monitoring study on a historical monument in Jordan. In this work, and within the framework of the European Commission funded project "wide-Range Non-Intrusive Devices Toward Conservation of Historical Monuments in the Mediterranean Area", a seven and a half century old minaret located in Ajloun (73 km north of the capital Amman) is studied. Because of their cultural value, touristic importance and the desire to preserve them for the future, only non-destructive tests were allowed for the experimental investigation of such heritage structures. Therefore, after dimensional measurements and determination of the current state of damage in the selected monument, ambient vibration tests are conducted to measure the accelerations at strategic locations of the system. Output-only modal identification technique is applied to extract the modal parameters such as natural frequencies and mode shapes. A Non-linear version of SAP 2000 computer program is used to develop a three-dimensional finite element model of the minaret. The developed numerical model is then updated according to the modal parameters obtained experimentally by the ambient-vibration test-results and the measured characteristics of old stone and deteriorated mortar. Moreover, a parametric identification method using the N4Sid state space model is employed to model the dynamic behavior of the minaret and to build up a robust, immune and noise tolerant model.

Fuzzy Controller Design for Active Vibration Isolation System Using Air-spring (공기스프링을 이용한 능동 방진 시스템의 퍼지 제어기 설계)

  • Yang, Xun;An, Chae-Hun;Jin, Kyong-Bok;Rim, Kyung-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.185-190
    • /
    • 2007
  • In recent days, vibration isolation system is mostly required in precise measurement and manufacturing system to reduce vibration due to external disturbances and internal actuators. Among all the vibration isolation systems, air spring is widely used because of its low resonant frequency and high damping ratio. In this study, we first analyze the passive air-spring system using leveling valve, and then design the active vibration isolation system. Because the non-linearity of pneumatic characteristics, we try to design the fuzzy controller which is better than PID controller at complex and non-linear system, and then compare them both in experiment and simulation.

  • PDF

Non linear vibrations of stepped beam systems using artificial neural networks

  • Bagdatli, S.M.;Ozkaya, E.;Ozyigit, H.A.;Tekin, A.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.1
    • /
    • pp.15-30
    • /
    • 2009
  • In this study, the nonlinear vibrations of stepped beams having different boundary conditions were investigated. The equations of motions were obtained by using Hamilton's principle and made non dimensional. The stretching effect induced non-linear terms to the equations. Natural frequencies are calculated for different boundary conditions, stepped ratios and stepped locations by Newton-Raphson Method. The corresponding nonlinear correction coefficients are also calculated for the fundamental mode. At the second part, an alternative method is produced for the analysis. The calculated natural frequencies and nonlinear corrections are used for training an artificial neural network (ANN) program which has a multi-layer, feed-forward, back-propagation algorithm. The results of the algorithm produce errors less than 2.5% for linear case and 10.12% for nonlinear case. The errors are much lower for most cases except clamped-clamped end condition. By employing the ANN algorithm, the natural frequencies and nonlinear corrections are easily calculated by little errors, and the computational time is drastically reduced compared with the conventional numerical techniques.

Characteristics Analysis of Induction Motor by Operation of Non-lineal Loads (비선형 부하의 운전시 유도전동기의 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Eun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.147-153
    • /
    • 2006
  • Voltage unbalance will be generated by the load unbalance operation such as combination operation of single & three phase load and current unbalance will be more severe by the deteriorated voltage quality. Under the these unbalance conditions, all power electronic converters used in different types of electronic systems can increase harmonic disturbances by injecting harmonic currents directly into the feeder grid of three phase 4-wire. Harmonic current may cause torque to decrease. it may also overheat or become noisy and torque oscillation in the rotor can lead to mechanical resonance and vibration. This paper presents a scheme on the characteristics of induction motor under the combination of linear & non-linear loads at the three phase 4-wire power distribution system by the unbalance and harmonic components. It was able to confirm that the number of torque pulsation decreased and torque ripple values increased by the harmonics that reduction was difficult by five harmonics filters at additional driving time of single-phase non-linear load.

  • PDF

Dynamic Analysis of an Automatic Dynamic Balancer in a Rotor with the Bending Flexibility (축의 굽힘효과를 고려한 회전체에 장착된 자동평형장치의 동적해석)

  • Jeong, Jin-Tae;Bang, In-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1125-1130
    • /
    • 2001
  • Dynamic behaviors of an automatic dynamic balancer are analyzed by a theoretical approach. Using the polar coordinates, the non-linear equations of motion for an automatic dynamic balancer equipped in a rotor with the bending flexibility are derived from Lagrange equation. Based on the non-linear equation, the stability analysis is performed by using the perturbation method. The stability results are verified by computing dynamic response. The time responses are computed from the non-linear equations by using a time integration method. We also investigate the effect of the bending flexibility on the dynamics of the automatic dynamic balancer.