• Title/Summary/Keyword: Non-linear Structural Analysis

Search Result 605, Processing Time 0.022 seconds

Structural Properties of MO-SiO$_2$(M=Zn, Sn, In, Ag, Ni) by Sol-Gel Method (졸겔법으로 제조된 MO-$SiO_2$(M=Zn,Sn,In,Ag,Ni)의 구조특성)

  • Sin, Yong-Uk;Kim, Sang-U
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.603-608
    • /
    • 2001
  • $MO-SiO_2$ (M = Zn, Sn, In, Ag, Ni) binary silica gels were synthesized by sol-gel method and their structural change with the kind of metal ions was characterized by XRD, FT- IR and $^{29}$Si-NMR. Although X-ray analysis showed partial recrystallization of $AgNO_3$ in $Ag-SiO_2$gel, crystalline phase formed by the bonding between metal ion and the silica matrix didn't appear in all $MO-SiO_2$ gels. The FT-IR analysis showed that Zn, Sn and in partially formed Si-O-M bonding in silica matrix and made an shift of absorption peak to by Si-O-Si symmetrical vibration. In addition, $^{29}Si-NMR$ studies showed that Zn, Sn and In didn't affect sol-gel process of silica and were linked with non-bridging oxygen of the linear silica structure, which formed imperfect network because of low temperature sol-gel process. Ag and Ni make a role of catalysis on sol-gel process, resulting in densifying the silica network structure.

  • PDF

Behaviour of steel-fibre-reinforced concrete beams under high-rate loading

  • Behinaein, Pegah;Cotsovos, Demetrios M.;Abbas, Ali A.
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.337-353
    • /
    • 2018
  • The present study focuses on examining the structural behaviour of steel-fibre-reinforced concrete (SFRC) beams under high rates of loading largely associated with impact problems. Fibres are added to the concrete mix to enhance ductility and energy absorption, which is important for impact-resistant design. A simple, yet practical non-linear finite-element analysis (NLFEA) model was used in the present study. Experimental static and impact tests were also carried out on beams spanning 1.3 meter with weights dropped from heights of 1.5 m and 2.5 m, respectively. The numerical model realistically describes the fully-brittle tensile behaviour of plain concrete as well as the contribution of steel fibres to the post-cracking response (the latter was allowed for by conveniently adjusting the constitutive relations for plain concrete, mainly in uniaxial tension). Suitable material relations (describing compression, tension and shear) were selected for SFRC and incorporated into ABAQUS software Brittle Cracking concrete model. A more complex model (i.e., the Damaged Plasticity concrete model in ABAQUS) was also considered and it was found that the seemingly simple (but fundamental) Brittle Cracking model yielded reliable results. Published data obtained from drop-weight experimental tests on RC and SFRC beams indicates that there is an increase in the maximum load recorded (compared to the corresponding static one) and a reduction in the portion of the beam span reacting to the impact load. However, there is considerable scatter and the specimens were often tested to complete destruction and thus yielding post-failure characteristics of little design value and making it difficult to pinpoint the actual load-carrying capacity and identify the associated true ultimate limit state (ULS). To address this, dynamic NLFEA was employed and the impact load applied was reduced gradually and applied in pulses to pinpoint the actual failure point. Different case studies were considered covering impact loading responses at both the material and structural levels as well as comparisons between RC and SFRC specimens. Steel fibres were found to increase the load-carrying capacity and deformability by offering better control over the cracking process concrete undergoes and allowing the impact energy to be absorbed more effectively compared to conventional RC members. This is useful for impact-resistant design of SFRC beams.

GEOTECHNICAL DESIGNS OF THE SHIP IMPACT PROTECTION SYSTEM FOR INCHEON BRIDGE

  • Choi, Sung-Min;Oh, Seung-Tak;Park, Sang-Il;Kim, Sung-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.72-77
    • /
    • 2010
  • The Incheon Bridge, which was opened to the traffic in October 2009, is an 18.4 km long sea-crossing bridge connecting the Incheon International Airport with the expressway networks around the Seoul metropolitan area by way of Songdo District of Incheon City. This bridge is an integration of several special featured bridges and the major part of the bridge consists of cable-stayed spans. This marine cable-stayed bridge has a main span of 800 m wide to cross the vessel navigation channel in and out of the Incheon Port. In waterways where ship collision is anticipated, bridges shall be designed to resist ship impact forces, and/or, adequately protected by ship impact protection (SIP) systems. For the Incheon Bridge, large diameter circular dolphins as SIP were made at 44 locations of the both side of the main span around the piers of the cable-stayed bridge span. This world's largest dolphin-type SIP system protects the bridge against the collision with 100,000 DWT tanker navigating the channel with speed of 10 knots. Diameter of the dolphin is up to 25 m. Vessel collision risk was assessed by probability based analysis with AASHTO Method-II. The annual frequency of bridge collapse through the risk analysis for 71,370 cases of the impact scenario was less than $0.5{\times}10^{-4}$ and satisfies design requirements. The dolphin is the circular sheet pile structure filled with crushed rock and closed at the top with a robust concrete cap. The structural design was performed with numerical analyses of which constitutional model was verified by the physical model experiment using the geo-centrifugal testing equipment. 3D non-linear finite element models were used to analyze the structural response and energy-dissipating capability of dolphins which were deeply embedded in the seabed. The dolphin structure secures external stability and internal stability for ordinary loads such as wave and current pressure. Considering failure mechanism, stability assessment was performed for the strength limit state and service limit state of the dolphins. The friction angle of the crushed stone as a filling material was reduced to $38^{\circ}$ considering the possibility of contracting behavior as the impact.

  • PDF

Reliability of Non-invasive Sonic Tomography for the Detection of Internal Defects in Old, Large Trees of Pinus densiflora Siebold & Zucc. and Ginkgo biloba L. (노거수 내부결함 탐지를 위한 비파괴 음파단층촬영의 신뢰성 분석(소나무·은행나무를 중심으로))

  • Son, Ji-Won;Lee, Gwang-Gyu;An, Yoo-Jin;Shin, Jin-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.5
    • /
    • pp.535-549
    • /
    • 2022
  • Damage to forests, such as broken or falling trees, has increased due to the increased intensity and frequency of abnormal climate events, such as strong winds and heavy rains. However, it is difficult to respond to them in advance based on prediction since structural defects such as cavities and bumps inside trees are difficult to identify with a visual inspection. Non-invasive sonic tomography (SoT) is a method of estimating internal defects while minimizing physical damage to trees. Although SoT is effective in diagnosing internal defects, its accuracy varies depending on the species. Therefore, it is necessary to analyze the reliability of its measurement results before applying it in the field. In this study, we measured internal defects in wood by cross-applying destructive resistance micro drilling on old Pinus densifloraSiebold & Zucc. and Ginkgo bilobaL., which are representative tree species in Korea, to verify the reliability of SoT and compared the evaluation results. The t-test for the mean values of the defect measurement between the two groups showed no statistically significant difference in pine trees and some difference in ginkgo trees. Linear regression analysis results showed a positive correlation with an increase in defects in SoT images when the defects in the drill resistance graph increased in both species.

Flexural Behavior of Reinforced Concrete Beams Retrofitted with Modified Polymer Mortar System (폴리머 모르타르로 단면을 복구한 철근콘크리트 보의 휨 거동)

  • Hong Geon-Ho;Choi Eun-Gyu;Lee Su-Jin;Shin Yeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.94-101
    • /
    • 2004
  • This study shows the test results of seven RC beams retrofitted with modified polymer system and parametric study about the effects of tensile strength of retrofitting materials by analytical method on the flexural behavior. The main parameters are the retrofitted depth and length. The beams are loaded to the failure by four-point loading. Test results show that the effect of the retrofitted length on the structural behavior is more significant than that of depth. As the retrofitted depth is increased, the beams represents the brittle failure mode The non-linear analysis is carried out to grasp the effect of the tensile strength of retrofitting material on the structural behavior. As the retrofitted depth and length are increased, the tensile strength becomes more effective so these parameters should be considered to determine the retrofitted area. The analytical results show that failure strength is less than that of experimental results, but the stiffness is vice versa.

Application of Ordinary Kriging Interpolation Method for p-Adaptive Finite Element Analysis of 2-D Cracked Plates (2차원 균열판의 p-적응적 유한요소해석을 위한 정규크리깅 보간법의 적용)

  • Woo, Kwang-Sung;Jo, Jun-Hyung;Park, Mi-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.429-440
    • /
    • 2006
  • This paper comprises two specific objectives. The first is to examine the applicability of ordinary kriging interpolation(OK) to the p-adaptivity of the finite element method that is based on variogram modeling. The second objective Is to present the adaptive procedure by the hierarchical p-refinement in conjunction with a posteriori error estimator using the modified S.P.R. (superconvergent patch recovery) method. The ordinary kriging method that is one of weighted interpolation techniques is applied to obtain the estimated exact solution from the stress data at the Gauss points. The weight factor is determined by experimental and theoretical variograms for interpolation of stress data apart from the conventional interpolation methods that use an equal weight factor. In the p-refinement, the analytical domain has to be refined automatically to obtain an acceptable level of accuracy by increasing the p-level non-uniformly or selectively. To verify the performance of the modified S.P.R. method, the new error estimator based on limit value has been proposed. The validity of the proposed approach has been tested with the help of some benchmark problems of linear elastic fracture mechanics such as a centrally cracked panel, a single edged crack, and a double edged crack.

Reinforcing Method for the Protective Capacities of Dispersal and Combat Facilities using Logistic Regression (로지스틱 회귀모형을 활용한 소산 및 전투시설의 방호성능 보강방안 연구)

  • Park, Young Jun;Park, Sangjin;Yu, Yeong-Jin;Kim, Taehui;Son, Kiyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.77-85
    • /
    • 2016
  • This study provides the numerical model to assess retrofit and strengthen levels in the dispersal and combat facilities. First of all, it is verified that direct-hitting projectiles are more destructive to the structures rather than close-falling bombs with explosion tests. The protective capacity of dispersal and combat facilities, which are modeled with soil uncertainty and structural field data, is analyzed through finite element method. With structural survivability and facility data, the logistic regression model is drawn. This model could be used to determine the level of the retrofit and strengthen in the dispersal and combat facilities of contact areas. For more reliable model, it could be better to identify more significant factors and adapt non-linear model. In addition, for adapting this model on the spot, appropriate strengthen levels should be determined by hands on staffs associated with military facilities.

Descriptive Study for Sonographic Morphology of the 1st Facet of Subscapularis Footprint (견갑하건 부착부의 제1부착면에 대한 초음파 소견의 기술적 연구)

  • Sohn, Hoon-Sang;Wi, Chan Kuk;Shon, Min Soo
    • Journal of the Korean Orthopaedic Association
    • /
    • v.54 no.4
    • /
    • pp.343-352
    • /
    • 2019
  • Purpose: The purpose of this study was to document the sonographic morphology of the subscapularis footprint, particularly the 1st facet, of the non-pathologic subscapularis tendon and footprint, and analyze the correlation between the size of the 1st facet and the demographic variables. Materials and Methods: Between March 2015 and December 2017, retrospectively data analysis was performed for the ultrasound (US) scans of 115 consecutive shoulder (mean age 53.4 years, range 23-74 years) with non-pathologic subscapularis tendon and footprint. The sonographic findings of the 1st facet of the subscapularis footprint was a very unique, flat, broad, and plane angle in the upward direction, which were distinguished from the other facets. On US, the transverse (medio-lateral) and longitudinal (superior-inferior) length of the 1st facet on axis of the humerus shaft were recorded. The demographic variables, including age, site, body height, weight, body mass index (BMI), and arm length, were reviewed. Results: On US, the mean transverse length of the 1st facet was 12.75 mm (range 10.54-14.50 mm, standard deviation [SD] 0.712) and the mean longitudinal length was 12.22 mm (range 9.20-13.30 mm, SD 0.888). The transverse and longitudinal length of the size of the 1st facet were significantly greater in males than in females (p<0.001, p=0.001). Of the demographic data (body height, weight, BMI, arm length) that showed a significant positive linear correlation, the correlation with body height (transverse r=0.749, p<0.001; longitudinal r=0.642, p<0.001) showed the strongest relationship, and the correlation with the BMI was weakly related. The relationships between the size of the 1st facet to site/age were not statistically significant or appeared to have no linear correlation. Conclusion: The structural and morphologic features of the 1st facet of the subscapularis footprint on the US were identified. This will provide anatomic knowledge of an US examination for subscapularis tendon pathology.

Dynamic Motions of Model Fish Cage Systems under the Conditions of Waves and Current (파랑 및 흐름중 모형 가두리 시설의 운동 특성)

  • KIM Tae-Ho;KIM Jae-O;RYU Cheong-Ro
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.1
    • /
    • pp.43-50
    • /
    • 2001
  • In order to analyze the dynamic motions of fish cage systems made of a frame and a netting under the conditions of waves and current, the hydraulic model experiment at towing tank and the numerical computation using boundary integral element method based on linear potential theory were carried out on a square and a circular type of fish cage, The computed and measured results for the dynamic motions of model fish cage systems showed that the heave and pitch motions were almost unaffected by the inclusion of nets, while the surge motions were very reduced by drag force acting on them. In addition, irregular wave-induced motions of fish cages included non-negligible 2nd order harmonic components at high frequency nearly twice the wave frequency. The reason why these motions were considered was due to resonance or structural components of frames being overflown and out of water during a wave cycle. It was found that circular type was more desirable structure in the open sea than square one only in the respect of dynamic motions due to waves and current. Further verifications were needed considering hydrodynamic forces, fatigue life, and structure analysis based on long term stochastic waves including frequency and time domain for the purpose of analyzing and designing fish cage systems.

  • PDF

THREE DIMENTIONAL FORCE ANALYSIS OF FORCE SYSTEM IN CONTINUOUS ARCHWIRE BY FINITE ELEMENT METHOD (CONTINUOUS ARCHWIRE의 FORCE SYSTEM에 대한 3차원 유한 요소법적 연구)

  • Row, Joon;Ryu, Young-Kyu
    • The korean journal of orthodontics
    • /
    • v.26 no.1 s.54
    • /
    • pp.17-32
    • /
    • 1996
  • It is important to understand the operating mechanism and force system of fixed appliance that most effective for individual tooth movement in various orthodontic appliances. The archwire system of fixed appliance is devided into 3 types, which is continuous arch, segmented arch and sectional arch. The last two types have longer interbracket distance and simple force operating points, so it is easy to control force system by operator. But the continuous arch has shorter interbracket distance and various bracket geometry, so it is hard to control and anaylze the force system. The purpose of this study was three dimentional force and moment analysis of continuous arch system by finite element method, which is similar situation to three dimentional elastic beam in structural engineering. Several sample form of various bracket geometry and artificial lower crowding typodont made by author were constructed, analyzed and compared each other. The results were as follows : 1. The force magnitude is linear proportional to the degree of displacement or tilting of the bracket. 2. The force magnitude is inversely non-linear proportional to the interbracket distance. 3. In three dimensional typodont model, while the force can be compared with that of the sample form in the area where adjacent bracket geometry is simple, the force is much more than the expected value in the area where adjacent bracket geometry is complex.

  • PDF