• Title/Summary/Keyword: Non-linear Shape

Search Result 315, Processing Time 0.025 seconds

Reduced Density Matrix Theory for Vibrational Absorption Line Shape in Energy Transfer Systems: Non-Condon Effects in Water

  • Yang, Mi-No
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.439-443
    • /
    • 2011
  • Using the projection operator technique, a reduced density matrix theory for linear absorption spectrum of energy transfer systems is developed for the theoretical absorption line shape of the systems with non-Condon transitions. As an application, we considered a model system of OH vibrations of water. In the present model calculation, the OH vibration modes are coupled to each other via intra-molecular coupling mechanism while their intermolecular couplings are turned off. The time-correlation functions appearing in the formulation are calculated from a mixed quantum/classical mechanics method. The present theory is successful in reproducing the exact absorption line shape. Also the present theory was improved from an existing approximate theory, time-averaged approximation approach.

A Non-contact Shape Measuring System Using an Artificial Neural Network

  • Jeong, Woo-tae;Lee, Myung-Chan;Koh, Duck-joon;Cho, Hyung-suck
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.399-404
    • /
    • 1996
  • We developed a non-contact shape measuring device using computer image processing technology. We present a method of calibrating a CCD video camera and a laser range finder which is the most important step toward making an accurate shape measuring system. An artificial neural network is used for the calibration. Our measurement system is composed of a semiconductor laser. a CCD video camera, a personal computer, and a linear motion table. We think that the developed system could be used for measuring the change in shape of the spent nuclear fuel rod before and after irradiation which is one of the most important tasks for developing a better nuclear fuel. A radiation shield is suggested for the possible utilization of the range finder in radioactive environment.

  • PDF

Active Earth Pressure behind Rigid Retaining Wall Rotating about the Top (정점을 중심으로 회전하는 강성옹벽에 작용하는 주동토압)

  • 백규호;사공명
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.181-191
    • /
    • 2004
  • For a rigid retaining wall with rough face, the magnitude and distribution of active earth pressure on the wall are affected by the shape of failure surface and arching effect developed in the backfill as well as internal friction angle of the backfill and wall friction angle. Therefore, the practical shape of failure surface and arching effect in the backfill must be considered to acquire accurate magnitude and non-linear distribution of active earth pressure acting on the rigid retaining wall. In this study, a new formulation for calculating the active earth pressure on a rough rigid retaining wall rotating about the top is proposed considering the practical shape of non-linear failure surface and arching effects. Accuracy of the proposed equation is checked through comparisons of calculations from the proposed equations with existing model test results. The comparisons show that the proposed equations produce satisfactory results.

Alcock-Paczynski Test with the Evolution of Redshift-Space Galaxy Clustering Anisotropy: Understanding the Systematics

  • Park, Hyunbae;Park, Changbom;Tonegawa, Motonari;Zheng, Yi;Sabiu, Cristiano G.;Li, Xiao-dong;Hong, Sungwook E.;Kim, Juhan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.78.2-78.2
    • /
    • 2019
  • We develop an Alcock-Paczynski (AP) test method that uses the evolution of redshift-space two-point correlation function (2pCF) of galaxies. The method improves the AP test proposed by Li et al. (2015) in that it uses the full two-dimensional shape of the correlation function. Similarly to the original method, the new one uses the 2pCF in redshift space with its amplitude normalized. Cosmological constraints can be obtained by examining the redshift dependence of the normalized 2pCF. This is because the 2pCF should not change apart from the expected small non-linear evolution if galaxy clustering is not distorted by incorrect choice of cosmology used to convert redshift to comoving distance. Our new method decomposes the redshift difference of the 2-dimensional correlation function into the Legendre polynomials whose amplitudes are modelled by radial fitting functions. The shape of the normalized 2pCF suffers from small intrinsic time evolution due to non-linear gravitational evolution and change of type of galaxies between different redshifts. It can be accurately measured by using state of the art cosmological simulations. We use a set of our Multiverse simulations to find that the systematic effects on the shape of the normalized 2pCF are quite insensitive to change of cosmology over \Omega_m=0.21 - 0.31 and w=-0.5 - -1.5. Thanks to this finding, we can now apply our method for the AP test using the non-linear systematics measured from a single simulation of the fiducial cosmological model.

  • PDF

Free Vibration of Beam-Columns on Non-Homogeneous Foundation (비균질 탄성지반 위에 놓인 보-기둥의 자유진동)

  • 이병구;오상진;이태은
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.206-211
    • /
    • 1999
  • The purpose of this study is to investigate the natural frequencies and mode shapes of beam-columns on the non-homogeneous foundaion. The beam model is based on the classical Bernoulli-Euler beam theory. The linear foundation modulus is chosen as the non-homogeneous foundation in this study . The differentidal equation goeverning free vibrations of such beam-columns subjected to axial load is derived and solved numerically for calculting the natural frquencies and mode shapes. In numerical fivekinds of end constraint are considered, and the lowest four natural frquencies and corresponding mode shape are obtained as the non-dimensional forms.

  • PDF

Monitoring the Welding Gap/Profile with Visual Sensor (시각센서를 이용한 용접 Gap/Profile 모니터링)

  • Kim, Chang-Hyeon;Choe, Tae-Yong;Lee, Ju-Jang;Seo, Jeong;Park, Gyeong-Taek;Gang, Hui-Sin
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2005.06a
    • /
    • pp.3-8
    • /
    • 2005
  • The robot systems are widely used in the welding manufacturing. The essential tasks to operate the welding robot are the acquisition of the position and/or shape of the parent metal. For the seam tracking or the robot automation, many kinds of contact and non-contact of the system which monitors the shape of the welding part is described. This system uses the line-type structured laser diode and the visual sensor. It includes the correction of radial distortion which is often found in the image from the camera with short focal length. Direct Linear Transformation (DLT) is used for the camera calibration. The three dimensional shape of the parent metal is obtained after simple linear transformation. Therefore, the system operates in real time. Some experiments are carried out to evaluate the performance of the developed system.

  • PDF

Optimum pole shape design of linear synchronous motor by Evolution Strategy (Evolution Strategy를 이용한 선형 동기 전동기의 최적 형상 설계)

  • Jeon, Dae-Yeong;Kim, Dong-Soo;Cha, Guee-Soo;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.932-934
    • /
    • 1993
  • Optimum pole shape is designed to increase the levitation and propulsion force of magnetic levitation systems. Evolution Strategy is introduced as optimization method. Evolution Strategy is random based non-deterministic method, developed by combining Genetic Algorithm with Simulated Annealing. Trasnsrapid-06, which was developed in Germany, is referenced model to be analyze. Design variables are nodes which determine fields pole shape of a linear synchronous motor, and the model analyzed by F.E.M.

  • PDF

Derivation of Exact Dynamic Stiffness Matrix for Non-Symmetric Thin-walled Straight Beams (비대칭 박벽보에 대한 엄밀한 동적 강도행렬의 유도)

  • 김문영;윤희택
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.369-376
    • /
    • 2000
  • For the general loading condition and boundary condition, it is very difficult to obtain closed-form solutions for buckling loads and natural frequencies of thin-walled structures because its behaviour is very complex due to the coupling effect of bending and torsional behaviour. Consequently most of previous finite element formulations introduced approximate displacement fields using shape functions as Hermitian polynomials, isoparametric interpoation function, and so on. The purpose of this study is to calculate the exact displacement field of a thin-walled straight beam element with the non-symmetric cross section and present a consistent derivation of the exact dynamic stiffness matrix. An exact dynamic element stiffness matrix is established from Vlasov's coupled differential equations for a uniform beam element of non-symmetric thin-walled cross section. This numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. The natural frequencies are evaluated for the non-symmetric thin-walled straight beam structure, and the results are compared with available solutions in order to verify validity and accuracy of the proposed procedures.

  • PDF

Pre-buckling deflection effects on stability of thin-walled beams with open sections

  • Mohri, F.;Damil, N.;Potier-Ferry, M.
    • Steel and Composite Structures
    • /
    • v.13 no.1
    • /
    • pp.71-89
    • /
    • 2012
  • The paper investigates beam lateral buckling stability according to linear and non-linear models. Closed form solutions for single-symmetric cross sections are first derived according to a non-linear model considering flexural-torsional coupling and pre-buckling deformation effects. The closed form solutions are compared to a beam finite element developed in large torsion. Effects of pre-buckling deflection and gradient moment on beam stability are not well known in the literature. The strength of singly symmetric I-beams under gradient moments is particularly investigated. Beams with T and I cross-sections are considered in the study. It is concluded that pre-buckling deflections effects are important for I-section with large flanges and analytical solutions are possible. For beams with T-sections, lateral buckling resistance depends not only on pre-buckling deflection but also on cross section shape, load distribution and buckling modes. Effects of pre-buckling deflections are important only when the largest flange is under compressive stresses and positive gradient moments. For negative gradient moments, all available solutions fail and overestimate the beam strength. Numerical solutions are more powerful. Other load cases are investigated as the stability of continuous beams. Under arbitrary loads, all available solutions fail, and recourse to finite element simulation is more efficient.

Static Deformation Analysis and Dynamic Characteristics Predicton of Compressed Rubber Materials (압축된 고무재료의 정적 변형 해석과 동특성 예측)

  • 김국원;임종락;손희기;안태길
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.472-476
    • /
    • 1999
  • The effect of static preload on the dynamic properties of rubber materials is rather important, especially when good isolation characteristics are required at high frequencies. However, there are still few papers for dynamic characteristics of compressed rubber components. It was demonstrated in reference (4) that for bonded rubber material of a cylindrical shape, a simplified theory equation between linear dynamic and nonlinear static behavior of rubber material was useful to predict their combined effects. This paper presents the second part of the study. It is confirmed that for the compressed rubber material, the stress can be factored into a function of frequency and a function of strain(stretch). The finite element methodis applied to analyze non-linear large deformation of rubber material and its results are compared with those of a simplified theory equation. The predicted dynamic material properties based on non-linear static finite element analyses have a good agreement of experimental results and those based on simplified theory equation.

  • PDF