• Title/Summary/Keyword: Non-linear Function

Search Result 823, Processing Time 0.033 seconds

Steady-State Harmonic Domain Matrix-Based Modeling of Four-Quadrant EMU Line Converter

  • Wang, Hui;Wu, Mingli;Agelidis, Vassilios G.;Song, Kejian
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.572-579
    • /
    • 2014
  • As a non-linear time variant system, the four-quadrant line converter of an electric multiple unit (EMU) was expressed by linear time periodic functions near an operating point and modeled by a steady-state harmonic domain matrix. The components were then combined according to the circuit connection and relations of the feedback control loops to form a complete converter model. The proposed modeling method allows the study of the amplitude of harmonic impedances to explore harmonic coupling. Moreover, the proposed method helps provide a better design for the converter controllers, as well as solves the problem in coordination operation between the EMUs and the AC supply. On-site data from an actual $CRH_2$ high-speed train were used to validate the modeling principles presented in the paper.

Development of PSD Sensor Based Range Finder System Using Linearizing Function of Voltage-Distance Conversion

  • Kim, Yu-Chan;Ryoo, Young-Jae;Song, Jeong-Gon;Lee, Ju-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1427-1430
    • /
    • 2005
  • In this paper, the range finder system using a PSD sensor suitable for low-cost localization sensor of a mobile robot. Because the distance-voltage output of a PSD sensor has a non-linear property, the linearizing function is proposed through the experimental characteristics of the sensor. And the characteristics are tested and the distance-voltage data are measured in various colors and materials of object. For a known environment, a mobile robot scans the surroundings using a PSD sensor that can rotate $360^{\circ}$. Finally, the performance and accuracy of the developed system are verified according to the comparison the distance by proposed function with real distance

  • PDF

Position Measurement Using Enclosed Signal Field with Pulse-Width-Modulated function

  • Ohyama, Shinji;Iizuka, Junya;Kobayashi, Akira
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.455-455
    • /
    • 2000
  • A novel pulse-width-modulated (PWM) function is introduced for precise position measurement in an enclosed signal field. An amplitude modulation was used to light the LEDs for the conventional study. However, the transform properties from the driving signal to the lighting intensities of the LEDs are non-linear, and accurate control of the lighting power was necessary. Therefore, a lighting function independent of these properties is desired. Well-known PWM functions are used to construct the enclosed signal field by simulation, and the precision of the phase detecting system is analyzed. A novel "axial symmetry PWM" function is found to be effective for orthogonal pahse detection.

  • PDF

FRACTIONAL HAMILTON-JACOBI EQUATION FOR THE OPTIMAL CONTROL OF NONRANDOM FRACTIONAL DYNAMICS WITH FRACTIONAL COST FUNCTION

  • Jumarie, Gyu
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.215-228
    • /
    • 2007
  • By using the variational calculus of fractional order, one derives a Hamilton-Jacobi equation and a Lagrangian variational approach to the optimal control of one-dimensional fractional dynamics with fractional cost function. It is shown that these two methods are equivalent, as a result of the Lagrange's characteristics method (a new approach) for solving non linear fractional partial differential equations. The key of this results is the fractional Taylor's series $f(x+h)=E_{\alpha}(h^{\alpha}D^{\alpha})f(x)$ where $E_{\alpha}(.)$ is the Mittag-Leffler function.

Numerical Verification of the First Four Statistical Moments Estimated by a Function Approximation Moment Method (함수 근사 모멘트 방법에서 추정한 1∼4차 통계적 모멘트의 수치적 검증)

  • Kwak, Byung-Man;Huh, Jae-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.490-495
    • /
    • 2007
  • This research aims to examine accuracy and efficiency of the first four moments corresponding to mean, standard deviation, skewness, and kurtosis, which are estimated by a function approximation moment method (FAMM). In FAMM, the moments are estimated from an approximating quadratic function of a system response function. The function approximation is performed on a specially selected experimental region for accuracy, and the number of function evaluations is taken equal to that of the unknown coefficients for efficiency. For this purpose, three error-minimizing conditions are utilized and corresponding canonical experimental regions constructed accordingly. An interpolation function is then obtained using a D-optimal design and then the first four moments of it are obtained as the estimates for the system response function. In order to verify accuracy and efficiency of FAMM, several non-linear examples are considered including a polynomial of order 4, an exponential function, and a rational function. The moments calculated from various coefficients of variation show very good accuracy and efficiency in comparison with those from analytic integration or the Monte Carlo simulation and the experimental design technique proposed by Taguchi and updated by D'Errico and Zaino.

Optimal Control for Discrete-Time Takagi-Sugeno Fuzzy Systems Based on Relaxed Non-Quadratic Stabilization Conditions (완화된 Non-Quadratic 안정화 조건을 기반으로 한 이산 시간 Takagi-Sugeno 퍼지 시스템의 최적 제어)

  • Lee, Dong-Hwan;Park, Jin-Bae;Yang, Han-Jin;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1724_1725
    • /
    • 2009
  • In this paper, new approaches to optimal controller design for a class of discrete-time Takagi-Sugeno (T-S) fuzzy systems are proposed based on a relaxed approach, in which non-quadratic Lyapunov function and non-parallel distributed compensation (PDC) control law are used. New relaxed conditions and linear matrix inequality (LMI) based design methods are proposed that allow outperforming previous results found in the literature. Finally, an example is given to demonstrate the efficiency of the proposed approaches.

  • PDF

Reliability Analysis of the Non-normal Probability Problem for Limited Area using Convolution Technique (컨볼루션 기법을 이용한 영역이 제한된 비정규 확률문제의 신뢰성 해석)

  • Lee, Hyunman;Kim, Taegon;Choi, Won;Suh, Kyo;Lee, JeongJae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.5
    • /
    • pp.49-58
    • /
    • 2013
  • Appropriate random variables and probability density functions based on statistical analysis should be defined to execute reliability analysis. Most studies have focused on only normal distributions or assumed that the variables showing non-normal characteristics follow the normal distributions. In this study, the reliability problem with non-normal probability distribution was dealt with using the convolution method in the case that the integration domains of variables are limited to a finite range. The results were compared with the traditional method (linear transformation of normal distribution) and Monte Carlo simulation method to verify that the application was in good agreement with the characteristics of probability density functions with peak shapes. However it was observed that the reproducibility was slightly reduced down in the tail parts of density function.

A NON-COMPACT GENERALIZATION OF HORVATH'S INTERSECTION THEOREM$^*$

  • Kim, Won-Kyu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.153-162
    • /
    • 1995
  • Ky Fan's minimax inequality is an important tool in nonlinear functional analysis and its applications, e.g. game theory and economic theory. Since Fan gave his minimax inequality in [2], various extensions of this interesting result have been obtained (see [4,11] and the references therein). Using Fan's minimax inequality, Ha [6] obtained a non-compact version of Sion's minimax theorem in topological vector spaces, and next Geraghty-Lin [3], Granas-Liu [4], Shih-Tan [11], Simons [12], Lin-Quan [10], Park-Bae-Kang [17], Bae-Kim-Tan [1] further generalize Fan's minimax theorem in more general settings. In [9], using the concept of submaximum, Komiya proved a topological minimax theorem which also generalized Sion's minimax theorem and another minimax theorem of Ha in [5] without using linear structures. And next Lin-Quan [10] further generalizes his result to two function versions and non-compact topological settings.

  • PDF

Stochastic analysis of the rocking vulnerability of irregular anchored rigid bodies: application to soils of Mexico City

  • Ramos, Salvador;Arredondo, Cesar;Reinoso, Eduardo;Leonardo-Suarez, Miguel;Torres, Marco A.
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.71-86
    • /
    • 2021
  • This paper focuses on the development and assessment of the expected damage for the rocking response of rigid anchored blocks, with irregular geometry and non-uniform mass distribution, considering the site conditions and the seismicity of Mexico City. The non-linear behavior of the restrainers is incorporated to evaluate the pure tension and tension-shear failure mechanisms. A probabilistic framework is performed covering a wide range of block sizes, slenderness ratios and eccentricities using physics-based ground motion simulation. In order to incorporate the uncertainties related to the propagation of far-field earthquakes with a significant contribution to the seismic hazard at study sites, it was simulated a set of scenarios using a stochastic summation methods of small-earthquakes records, considered as Empirical Green's Function (EGFs). As Engineering Demand Parameter (EDP), the absolute value of the maximum block rotation normalized by the body slenderness, as a function of the peak ground acceleration (PGA) is adopted. The results show that anchorages are more efficient for blocks with slenderness ratio between two and three, while slenderness above four provide a better stability when they are not restrained. Besides, there is a range of peak intensities where anchored blocks located in soft soils are less vulnerable with respect to those located in firm soils. The procedure used in here allows to take decisions about risk, reliability and resilience assessment of different types of contents, and it is easily adaptable to other seismic environments.

Palatability Grading Analysis of Hanwoo Beef using Sensory Properties and Discriminant Analysis (관능특성 및 판별함수를 이용한 한우고기 맛 등급 분석)

  • Cho, Soo-Hyun;Seo, Gu-Reo-Un-Dal-Nim;Kim, Dong-Hun;Kim, Jae-Hee
    • Food Science of Animal Resources
    • /
    • v.29 no.1
    • /
    • pp.132-139
    • /
    • 2009
  • The objective of this study was to investigate the most effective analysis methods for palatability grading of Hanwoo beef by comparing the results of discriminant analysis with sensory data. The sensory data were obtained from sensory testing by 1,300 consumers evaluated tenderness, juiciness, flavor-likeness and overall acceptability of Hanwoo beef samples prepared by boiling, roasting and grilling cooking methods. For the discriminant analysis with one factor, overall acceptability, the linear discriminant functions and the non-parametric discriminant function with the Gaussian kernel were estimated. The linear discriminant functions were simple and easy to understand while the non-parametric discriminant functions were not explicit and had the problem of selection of kernel function and bandwidth. With the three palatability factors such as tenderness, juiciness and flavor-likeness, the canonical discriminant analysis was used and the ability of classification was calculated with the accurate classification rate and the error rate. The canonical discriminant analysis did not need the specific distributional assumptions and only used the principal component and canonical correlation. Also, it contained the function of 3 factors (tenderness, juiciness and flavor-likeness) and accurate classification rate was similar with the other discriminant methods. Therefore, the canonical discriminant analysis was the most proper method to analyze the palatability grading of Hanwoo beef.